
The Consumer Journey in
Uncovering an Exploit:
A Call for Transparency

Author: 
C.N.

Date: 
1a2b3c → 2d3e4f

Disclaimer:
This research is my intellectual property and is shared for discussion and security-related
purposes. While I encourage sharing and engagement, please note that until
independently verified by security experts, this paper should be regarded as a hypothesis.
I am not responsible for any misinterpretations or for individuals taking the content out of
context or considering it conclusive.

Additionally, I have decided not to include the appendix for the broader public. Ironically,
due to privacy concerns, it will only be made available to verified security researchers
who are willing to collaborate with me to verify the claims presented.

1

Table of contents

Introduction	
3
1. Discovery and Disbelief: Apple’s Inaction in the Face of an Exploit	
4
2. The Price of Discovery: My Journey	
6
3. The iOS Breach: First Signs of Trouble	
7
4. New Phone, New Strategy	
9
5. Silent Signals: Scrutinizing iOS Logs	
10
6. Hidden Menace: Uncovering the Scope	
26
7. iOS Exposed: The Silent Takeover	
31
8. Connected Threats: Siri, Proxies, and Device Cloning	
39
9. Supplementary Findings	
53
10. Exploit Chain: My Hypothesis	
61
Conclusion	 62

2

Introduction
The information I am about to present is both unsettling and concerning, yet I feel a
strong responsibility to bring it to light. Apple's security is widely regarded as top-tier by
industry standards, which makes it all the more mind-blowing to me that I, as an
individual, was able to uncover a potential exploit chain within their ecosystem. I have
long had a strong interest in technology and security.

Although I am not formally trained as an expert in this field, I possess a deep passion for
independent learning and autonomous exploration of these subjects. My interest took on
a more urgent and personal dimension when I became the target of an unknown hack/
exploit as a mere civilian. This event prompted me to investigate the security of Apple
products extensively, and over time, I have gathered proof of a significant vulnerability.

Despite my efforts to address the issue to Apple and other authorities, the response I
received was either delayed or inadequate in addressing the severity of the issue.
Frustrated by the lack of support, I decided to take matters into my own hands and
began investigating the exploit independently.

This report will walk you through how I first discovered the exploit, how it affected my life,
and I will aim to explain my findings in straightforward, easy-to-understand way. I will take
a step-by-step approach to describe what I uncovered and how it might operate. If my
findings are validated by independent experts, this could potentially be one of the most
significant security vulnerabilities discovered in recent history, with profound implications
for the privacy of all Apple users.

I have made the decision to write this paper on my own terms, fully aware that it does not
adhere to the conventional structure often expected of academic works. While I am
cognizant of the typical requirements for such papers, I must disclose that my personal
experience with the exploit has left me fatigued. After spending months investigating and
dealing with this issue, I feel compelled to share my findings despite the challenges I have
faced.

Due to the nature of the potential exploit chain I uncovered, I do not have access to a
regular computer, as any device I use would be immediately affected. As a result, I am
currently writing this paper on my wife’s iPad M4, which, unfortunately, may also be
affected by the exploit. I mention this not as an excuse, but to provide context for the
conditions under which this work has been undertaken.

Additionally, much of Apple's security infrastructure and many of its features are not
publicly documented or are difficult to access. Consequently, there may be some
inconsistencies or gaps in the information presented within this paper. I ask that you, the
reader, keep this in mind as you review my findings.

These potential inconsistencies should not diminish the credibility of the core
observations I have made, but rather, I hope they will serve as a starting point for more
rigorous investigation. I trust that this paper will prompt well-trained security experts to
review and assess my findings, and in doing so, help ensure the accuracy and
significance of the potential issue I have uncovered.

3

1. Discovery and Disbelief: Apple’s Inaction in the Face
of an Exploit
Approximately seven months ago, I observed anomalous behavior on my recently
acquired MacBook Air M2. During a routine maintenance procedure, I attempted to clean
up the system, only to discover that a significantly larger portion of disk space was
allocated to certain applications than was apparent within the macOS Finder and built-in
storage management. Following the installation of a third-party application, I uncovered
hidden folders and volumes, which accounted for the discrepancy in data usage. Notably,
some of these directories were assigned developer permissions and related to bootfiles
(appx. IMG0015), a detail that immediately struck me as unusual, given that I had never
registered as a developer nor had I used beta software on the device. At the time, I was
completely unaware of the complex issue I was about to uncover.

Regrettably, I did not document many of the initial findings in detail, as I did not initially
suspect a compromise. However, as I delved further into the system, I observed several
concerning signs. These included the presence of hidden user accounts with root
privileges, the creation of volumes containing copies of my personal files, active VPN
connections, and continued network traffic even after disabling Wi-Fi and Bluetooth.
Furthermore, I personally witnessed external control over my MacBook through various
accessibility features, such as VoiceOver, the accessibility keyboard and Siri-controlled
Shortcuts, despite never having enabled these features. This series of events prompted
me to suspect a security breach, leading me to initiate a factory reset of the system.

After executing a factory reset from the built-in secure recovery partition, I opted to start
the MacBook in Safe Mode for added precaution. This mode ensures that only essential
boot files are loaded, minimizing the risk of any unwanted interference. Upon accessing
the firewall settings, I found several insecure protocols enabled, including Kerberos,
openSSH, Python3, sharingd, remoted, cupsd and smbd, all of which could potentially
allow unauthorized network access (appx.). I disallowed network access to them
immediately, but after re-opening the settings a few minutes later, they were suddenly
allowed again, including other security and accessibility related settings I had previously
changed.

This made me question whether my device might have been compromised by a rootkit.
This is a type of malicious software designed to gain unauthorized access to a computer
or network while concealing its presence, often by modifying the core system files to
evade detection. However, I reasoned that such a rootkit would likely be unable to bypass
Apple’s secure partition. Still, the findings raised significant concerns, prompting me to
perform a second factory reset and meticulously review the installation log files.

During the second installation process, multiple error messages were displayed, and
several unknown helper tools were downloaded. Also, the system retrieved data from
cached memory. This behavior was particularly concerning, as it is atypical for cached
memory to persist during a clean installation on an Apple system. Specifically, Apple’s
clean installation procedure includes a reset of both the NVRAM and SMC to prevent any
unauthorized manipulation.

4

To document this anomaly, I saved the installation log and continued monitoring the
process. After the reinstallation, the saved log file had disappeared, and I observed that
the same unsolicited protocols reappeared in the firewall settings.

To investigate further, I accessed Apple's built-in console to monitor live system activity.
During this investigation, I noticed hundreds of attempts by the system to connect to
Apple servers that are specifically used for the loading of Mobile Device Management
(MDM) profiles. Most attempts failed due to unknown errors, some eventually succeeded.

MDM is a framework used by organizations to remotely manage and configure mobile
devices, such as iPhones and iPads, within an enterprise environment. It allows
administrators to enforce security policies, install apps, and configure system settings on
enrolled devices. MDM is typically employed by businesses, educational institutions, and
government agencies to ensure that devices comply with organizational security
standards and are properly managed throughout their lifecycle.

It is evident that such behavior should not occur on a consumer device. This further
validated my initial suspicions that the system had been compromised. Given that the
device was still under warranty, I opted to return it for repair or replacement, ensuring to
include a detailed warning that the issue appeared to involve an advanced rootkit, which
required careful handling. Upon inspection by an Apple service center associated with the
vendor, the technicians chose to perform a system reset using an alternative method:
rather than relying on the built-in recovery partition or internet recovery, the operating
system was reinstalled from an external source. This approach is generally considered
more secure, as the external source is assumed to be free from any potential
compromises.

I received the laptop back and, upon inspection, encountered what I perceive to be an
instance of Apple’s institutional arrogance. Despite the reinstallation, the laptop had not
undergone any further diagnostics, and within five minutes of use, I encountered the
same issues as before. I immediately suspected that the rootkit in question was
sufficiently sophisticated to the point where exceptions had been written into the kernel,
enabling it to circumvent any form of reinstallation or remediation.

To investigate this further, I scheduled an appointment at the Genius Bar, specifying that I
had identified what appeared to be an exploit and wished to share my findings with an
Apple expert. Upon my arrival at the Apple Store, however, I discovered that the individual
assigned to assist me was not a qualified expert, but rather a sales representative with
less technical knowledge of Apple products than myself. What followed was a particularly
dismissive interaction, during which the representative claimed that if I had indeed
discovered an exploit, Apple would already be aware of it through their bounty program—
an initiative designed to incentivize the public to report security vulnerabilities in exchange
for monetary compensation.

Furthermore, I was informed that no one at the store possessed the requisite expertise to
thoroughly investigate my claims, and I was advised to simply trust Apple’s security
systems, which, according to the representative, were "water-tight" and infallible.

From that moment on, I realized that I was on my own and simply decided to return the
MacBook to the vendor, requesting a refund on the grounds of hardware failure, as
internal components had been compromised and no viable means of repair were
available. Fortunately, they agreed to my request, and under normal circumstances, this
would have marked the conclusion of my story.

5

2. The Price of Discovery: My Journey
Given the unsettling discoveries and the lack of satisfactory resolution from Apple, I felt
compelled to extend my investigation beyond just the MacBook. The series of events led
me to question the security of other devices within my Apple ecosystem. If such
vulnerabilities could be present on one device, it was entirely plausible that similar issues
could exist across my other Apple products. This realization prompted me to take
proactive measures to ensure that my entire digital environment—ranging from my iPhone
and iPad to my other connected devices—was free from any potential security threats.
My instinct for thoroughness and my commitment to safeguarding my privacy drove me
to dig deeper, as I could not ignore the possibility that my entire Apple ecosystem might
be compromised in ways that were yet to be discovered.

Driven by the need for reassurance and answers, I began to delve into how iOS operates,
researching the security measures Apple has in place and identifying potential indicators
of similar vulnerabilities across my devices. My investigation led me to Apple fora and
various tech communities, where I sought insights from others who might have
encountered similar issues. However, I quickly became frustrated with the overwhelming
tendency for many users to dismiss or ignore any evidence provided by those of us
experiencing these problems. The prevailing sentiment across nearly all discussions was
that Apple’s security was unbreachable, a notion that seemed to stifle any serious inquiry
into potential flaws.

In nearly every thread I encountered, individuals were actively discouraged from
conducting their own investigations. The prevailing message was that it would be a futile
endeavor for a non-developer or non-programmer to even attempt to analyze crash
reports, diagnostic files, or to understand the complex internal codenames Apple uses for
its systems. Far from deterring me, this dismissal only fueled my resolve. It made me
more determined to break through these barriers, reject the status quo, and embark on a
deep dive into the issue, fully committing to uncovering the truth and understanding the
matter for myself.

Just as I encountered resistance online, those around me struggled to believe that such
an exploit could exist, especially on modern Apple devices. The idea of something so
sophisticated running undetected in a mainstream ecosystem seemed unfathomable to
them. This disbelief caused me to second-guess my own sanity at times. When your most
deeply held convictions are met with rejection, it’s difficult not to feel isolated, trapped in
a void where no one understands what you’re experiencing. The frustration was
compounded by a sense of loneliness in my pursuit, with almost no one to turn to for
validation or support.

I believe it’s crucial to bring uncomfortable truths into the open—just as I’m doing with
this exploit—since both are integral to understanding the journey I’ve been on. I share this
personal story to highlight the toll this investigation took; the isolation I felt during this
journey was difficult to bear. The psychological impact of encountering a sophisticated
exploit without professional support or recognition shouldn’t be underestimated. It’s a
part of the story that deserves to be told, as many face similar struggles, in silence.

6

3. The iOS Breach: First Signs of Trouble
I began my investigation with a straightforward approach, using Apple’s built-in security
features on my iPhone 15 Pro. One of the first steps I took was to initiate the Emergency
Privacy Restore, a feature designed to restore a device to a more secure state by
automatically disabling certain privacy settings, reverting any unauthorized changes, and
re-enabling default security configurations. This feature is intended to address situations
where the device may have settings enabled that impact your privacy. Essentially, it
serves as a safeguard to help restore the phone’s integrity without the need for a full
factory reset.

However, almost immediately after activating this restore function, I encountered issues
that suggested the exploit had a hold on my iPhone as well. Despite the Emergency
Privacy Restore being designed to ensure a clean and secure state, I observed persistent
anomalies. Sharing settings failed to load, and after resetting: Home, Maps and Health
could not reset(appx.). This raised immediate concerns that the exploit, or whatever form
of compromise had affected my iPhone 15 Pro, was maybe just as sophisticated and
resilient as what took a hold of my MacBook.

At this point, I felt it was too early to draw any definitive conclusions. After all, I had
previously removed the Home, Maps, and Health apps from my device, and it was
possible that the error I encountered was related to the absence of these apps. Therefore,
I decided to reinstall them, carefully checking their settings to ensure there were no
unusual configurations or permissions in place. Upon reinstalling the apps, I found no
irregularities in their settings. I then proceeded to attempt the Emergency Reset once
more, hoping this would resolve the issue.

Although I no longer received error messages regarding the reinstalled apps, the issue
related to the retrieval of certain privacy-related information persisted. This led me to
briefly entertain the possibility that the problem was indeed tied to the removal of those
apps, and that perhaps the situation was not as serious as initially suspected. However,
when I navigated back to the privacy and security page, I immediately noticed a
concerning anomaly: over 30 active connections(appx.) were now showing at the Local
Network section. This was particularly troubling, as I do not use Wi-Fi on my device
(relying solely on cellular data via the SIM card), and I had never enabled local network
functionality for any apps. The appearance of so many unexpected connections raised a
clear red flag, indicating that something more significant was likely at play after all.

Unfortunately, the system did not provide any further details regarding the specific nature
of the active connections, preventing me from definitively ruling out the possibility of a
software bug. As a result, I proceeded with a factory reset of the iPhone using an
externally borrowed laptop and afterward, carefully reviewed the iPhone settings. Upon
initial inspection, everything appeared to be in order. As a precautionary measure, I chose
to disable all accessibility features, considering that such settings had been exploited on
the MacBook for unauthorized system interactions.

However, the following day, I discovered an issue that warranted further concern. Despite
having disabled Siri and all of it components carefully, it continued to appear in the
iPhone’s analysis logs, accompanied by multiple unknown error messages.

7

Additionally, a reference to VoiceOver was present. Upon revisiting the settings, I found
that certain accessibility features, which I had previously disabled, had been partially
reactivated without my consent.

In response to these findings, I decided to initiate another Privacy Reset in an attempt to
resolve the issue. Unfortunately, the same anomalies persisted, with the Local Network
settings now displaying 27 active connections(appx.)—a decrease from the pre-factory
reset count, but still, it shouldn’t show any connections at all. The likelyhood of a bug
decreased due to these repeated findings under different circumstances.

At this juncture, I deemed it necessary to take more rigorous action. I opted to perform a
Device Firmware Update (DFU) restore, a process that bypasses the bootloader (which
stores essential integrity files and could have been corrupted) and erases the device’s
cache. Given that the iPhone 15 Pro utilizes the newer A17 Pro chip based upon M3
architecture, as opposed to the M2 chip in the MacBook, I hoped that this approach
would yield a more thorough reset, as Apple’s security protocols are generally improved
with each new generation of hardware. This method represented my final attempt to
ensure the integrity of the device, in the hope of resolving any potential security
vulnerabilities.

This moment marked the emergence of definitive evidence, transitioning from suspicion
to verifiable confirmation of a compromise. Upon attempting to reconfigure the iPhone, I
encountered a critical notification: ’This iPhone has already been partially set up. This
could affect the security of your device. Continue with partial setup or erase and
start over?’(appx.). For the first time, my prior suspicions were corroborated, as the
notification indicated the existence of unauthorized configurations on the device, active
without my consent. I promptly chose the option to "erase and start over." It is important
to note here that both my MacBook as my iPhone were purchased brand new, and a
configuration profile was never physically installed on the device.

Although there was a part of me that hoped this action would resolve the issue, I was
immediately struck by the inconsistency of the situation. Following a DFU restore, which
is intended to completely reset the device by bypassing the bootloader and clearing
cached data, no settings should have persisted. The presence of such a warning
message, however, indicated that some form of persistent configuration remained. While
this suggested that some of Apple’s security protocols were still operational, it was also
evident that this notification should not have occurred if the device had been completely
wiped.

This raised the critical question: Could the device’s kernel have been compromised,
rendering the restore process ineffective? This hypothesis was strengthened as I
proceeded with the iPhone's setup. Within a few minutes, the device rebooted
autonomously, and I observed that the language setting, which I had intentionally set to
English, had reverted to Dutch—the default language prior to the DFU-restore.
Furthermore, my E-Sim was suddenly erased, and all system settings had returned to
their pre-restore state. These observations indicated that the exploit possessed an
extraordinary level of persistence, surviving both the DFU restore and the ’erase and start
over’ process.

8

This sequence of events provided irrefutable evidence of two possibilities: either a highly
sophisticated and persistent exploit, potentially embedded within the kernel, capable of
maintaining control over the device despite multiple reset attempts, or a bizarre bug and
failure within Apple’s security mechanisms. If it was the latter, it would suggest a deep
flaw in the system, allowing the device to remain compromised despite efforts to restore
its integrity. This scenario indicates that the issue is not transient, but instead reflects
either a fundamental failure or, potentially, the presence of malicious code.

If we assume the latter, what other underlying factors could be contributing to the
persistence of this malicious code? Are there additional variables at play that explain its
continued presence?

4. New Phone, New Strategy
In the next phase of my strategy, I recognized the need to devise an alternative approach
to safeguard my privacy. To achieve this, I decided to purchase a new iPhone 13, replace
my Wi-Fi router, and then set up the iPhone with all other Apple devices turned off,
thereby ensuring a more secure and isolated configuration.

Upon completing the initial setup, I immediately activated ‘Lockdown Mode’, a security
feature introduced by Apple to enhance device protection against advanced threats.
Lockdown Mode imposes strict limitations on various functionalities—such as disabling
message attachments, restricting web browsing features, and minimizing the device’s
connectivity options—thereby significantly reducing the risk of cyber exploitation.

Subsequently, I created a new iCloud account, deliberately opting to use a cell
connection rather than the Wi-Fi network to further isolate the configuration process from
any potential network-based vulnerabilities and updated the device to the latest iOS,
which was 18.0.1 at that point. Since setup, bluetooth and Wi-Fi remained turned off and
I disabled all accessibility features and deactivated non-essential options within the
device’s settings. This comprehensive approach was aimed at minimizing the attack
surface, and reducing the potential for any external interference or exploitation.

In the meantime, I delved deeper in iPhone analytical logs and sought to better
understand its underlying mechanisms. I also enabled the transparency logging feature
and used ScreenTime to block as many potentially insecure functions as possible. I
believed that these measures should be sufficient to ensure a safe device. However, the
entire process felt somewhat excessive—it was as if I were going to great lengths despite
not being a person of interest, an activist, or anyone with a particular target on their back
—just an ordinary person. Nonetheless, I adhered to the mindset of better safe than sorry.

I decided to explore tools to analyze my iPhone further. After researching available
options, I came across 'iVerify' and 'iMazing'. iVerify is an application designed to help
users assess the security status of their devices by checking for signs of compromise,
such as unusual configurations or potential vulnerabilities that could be exploited by
malware or spyware.

Additionally, I discovered 'iMazing', which includes a tool called ‘MVT’ which is made and
used by 'Amnesty International' to detect spyware on mobile devices. iMazing is well-
known for its role in identifying and analyzing signs of surveillance, including spyware
implants like 'Pegasus'.

9

Pegasus is a sophisticated piece of spyware developed by the Israeli firm 'NSO Group'. It
has gained international attention for its ability to silently infiltrate and monitor
smartphones without the user's knowledge. The spyware can remotely access data,
record conversations, and track the location of the device, making it a powerful and
dangerous tool for state-sponsored surveillance.

I didn’t expect to be targeted by something like 'Pegasus', given the high cost of using
such advanced spyware, which is typically reserved for high-profile targets. However, I
recognized that other actors—perhaps less resource-intensive—could still exploit similar
vulnerabilities for different purposes. Even without access to tools like Pegasus, it’s
possible for other malicious entities to find and exploit security flaws for surveillance or
data theft.

By utilizing these tools, I aimed to scrutinize my iPhone for any potential threats. The
results from both tools indicated no signs of compromise, which was a relief. Could it be
that I was finally in the clear?

5. Silent Signals: Scrutinizing iOS Logs
I began to regain some confidence in the security of my device but decided to remain
cautious and maintain the settings I had configured for the time being. After a couple of
weeks, everything still appeared to be in order. However, I began to notice that my iPhone
was experiencing frequent lag, heating issues and certain apps were crashing more often
than I was accustomed to.

I acknowledged that this could happen, especially after a new iOS release, as it’s not
uncommon for some features to be buggy. However, by this point, I had gained a deeper
understanding of iPhone analytics, and thanks to 'iVerify', I had also familiarized myself
further with internal system diagnostics. At this stage, I felt it was worth investigating the
logs for potential anomalies—if it didn’t help, it wouldn’t hurt.

So far, my findings have been largely anecdotal. Although I had some evidence that my
previous iPhone was compromised, I had not yet identified any concrete issues with my
new phone, nor had I encountered any persistent problems in Apple’s ecosystem. If my
new phone were to become infected, I would need to provide evidence in a more
sophisticated way.

Therefore, I will now be diving deeper into the subject, which will become more complex
and technical. As promised in the introduction, I will do my best to present the information
in a way that is accessible to those with limited technical knowledge. As previously
mentioned, I am not an expert, developer, or programmer myself. To understand these
processes, it was essential for me to first break them down into simpler, more
comprehensible terms as well.

Analytics and crash logs
iPhone analytics and crash logs are tools that help you understand how your device is
performing and why certain apps may be malfunctioning. Analytics tracks information
about how the phone and apps are behaving. It includes data on app performance,
system errors, and even possible security issues. This data helps Apple and developers
fix bugs and improve performance in future updates.

10

Together, these tools provide insights into your iPhone’s performance and can help
diagnose problems, whether they’re related to app crashes, system errors, or security
vulnerabilities. The first clue came from the analytical logs. I noticed that some apps had
a beta identifier number(appx. IMG 0098 / 0096), which immediately triggered flashbacks
to what had happened with my MacBook being put in Developer mode. This familiar
pattern raised concerns, as regular apps installed through the official app store normally
don’t have such beta identifiers present.

Additionaly, I noticed that I was eligible for Betá-updates, without developer enrollment in
this program(appx. IMG_0017). Furthermore, by using an app called ‘Lirum Info’, I was
able to determine there is an active Developer volume present on my device. These are
clear indications of the iPhone operating in Developer Mode without my consent.

Back to the logs, they showed entries related to disk writes—basically, data being saved
to the device’s storage. Note that the source of these disk writes(appx.) is deemed
‘unknown’. It's not unusual for this to happen and doesn’t usually signal an issue. But in
this case, it felt suspicious. Unidentified disk writes can sometimes point to hidden
processes or unauthorized activity running in the background, which made me wary and
eager to dig deeper.

I began to examine the logs of all my Apple devices more carefully, searching for
additional unknown source entries. I found hundreds of entries—too many to be
coincidental. To streamline the analysis, I won’t list them all here. Instead, I will focus on
the most significant ones, where the source is listed as ‘unknown’, starting with the
'updatebrainservice'.

The 'updatebrainservice' is part of the process responsible for handling system updates
on iOS devices. It manages the installation of software updates, including downloading
and verifying new updates, as well as managing the update process itself. If this service is
running unexpectedly or shows unknown sources, it could indicate an anomaly in the
update mechanism.

The log in question came from my new iPhone 13, which I had been using for several
weeks by that point. It was from the first software update I performed at home after
acquiring the device. Could it have already been compromised during or shortly after
setup despite my precautionary measures? Is this even possible?

Indeed, it is entirely possible (source). The software update process itself has been
targeted in the past, and vulnerabilities within this system have been exploited, even up to
2023. Despite Apple's continuous efforts to patch security flaws, there have remained
gaps and potential entry points for other types of exploits within the update service.
These vulnerabilities could potentially allow malicious actors to compromise a device
during the update process, bypassing standard security measures.

Unfortunately, the log has since disappeared, but luckily I took a screenshot that contains
some useful information. Firstly, the date is October 4th, while the iPhone was first
initialized in November. Secondly, you can see that the 'unknown' source is the initiator of
the process. I will revisit the suspicious date entry later on.

11

https://jhftss.github.io/The-Nightmare-of-Apple-OTA-Update/

In the course of investigating this potential security issue, I discovered a series of
anomalies in other update logs from my new iPhone 13 and iPad M4. These logs, which
I’ve included in the appendix, reveal patterns of suspicious activity, some of which
suggest possible tampering or system manipulation. The behavior observed is similar to
issues seen in the UpdateBrainService, but it extends beyond simple anomalies, pointing
to more concerning signs of potential exploitation or persistent vulnerabilities within the
system.

Key Findings on both devices:

1. Persistent NVRAM Manipulations

 Continuous updates to critical NVRAM variables such as `auto-boot` and `enable-
remap-mode` suggest potential tampering. These changes are frequent and include
multiple resets, raising concerns about system control being persistently maintained
despite reset attempts.

2. Skipped APNonce and Firmware Verification

 Key APNonce checks, which verify the integrity of the firmware, were skipped or
marked as clearable. This could point to an intentional bypass of firmware verification
steps, leaving the system vulnerable to unauthorized modifications.

3. Unexpected Partition and Reprobe Activity

 The logs show repeated detection of unexpected system partitions and data reprobes.
These entries could indicate the existence of hidden or manipulated partitions designed
to conceal malicious activities or persistent threats.

4. Firmware and Trust Failures

 Several firmware updates were either skipped or failed, with trust validation errors
noted. This suggests that critical security measures are not being fully executed,
potentially allowing unauthorized access or modifications to the system.

5. Tolerated Failures and Debug Indicators

 Certain failures were marked as "tolerated," indicating that these errors were
deliberately overlooked. Among them are critical failures related to the LwVM keylocker,
hinting at systemic vulnerabilities or intentional allowances for errors that could be
exploited.

6. Restricted Data Partition Access

 Attempts to mount the data partition were restricted, potentially to prevent further
examination or tampering with sensitive data. This restricted access raises concerns
about the integrity of system storage.

7. Firmware Sealing Skipped and Missing SEP Patch

 Logs indicate skipped firmware sealing processes and missing SEP patches, both of
which are essential for maintaining the security of the device’s secure enclave. The
absence of these patches could leave the system vulnerable to attacks targeting the
Secure Enclave.

8. Indicators of Remote Access and Proxy Configuration Changes

 Evidence of changes to proxy configurations and bypass mechanisms suggests the
possibility of remote access, potentially indicating that external actors may have
tampered with the device.

12

9. High CPU and Memory Usage in Critical Threads

 Elevated CPU and memory usage by specific threads, such as
`AppleConvergedIPCOLYBTControl` and `VM_swapout`, suggests that there may be
memory-resident malware or unauthorized activity affecting system performance.

Secure Enclave Processor (SEP) Anomalies:

- Repeated SEP Initialization and Gigalocker Activity: Logs indicate ongoing SEP
initializations and Gigalocker activity, suggesting interference with secure storage
processes.

-Missing SEP Patches and Unusual xART Partition Activity: Missing SEP patches and
unusual references to the xART partition may point to vulnerabilities in the Secure Enclave
firmware, leaving the system exposed to attack.

- Debug Commands and SEP Ping Attempts: The execution of debug commands and
multiple attempts to ping the SEP suggest unauthorized efforts to bypass SEP’s security
measures.

Conclusion
The findings from both the iPhone 13 and iPad M4 logs reveal a series of troubling
anomalies that suggest potential tampering, system manipulation, and failures within
Apple’s security mechanisms. The combination of persistent NVRAM manipulations,
skipped integrity checks, unexpected partition activity, and issues with firmware sealing
and SEP patches raises significant concerns. These logs point to possible remote access,
memory-resident malware, and a fundamental breakdown in critical security processes.

Other Logs
Let’s continue by examining additional logs. A ‘jetsam event log’ is triggered when iOS
terminates background apps or processes to free up memory, typically due to low system
resources. While this is a normal part of memory management, frequent jetsam events
can suggest apps consuming excessive memory or potential underlying system issues. I
will also include the SystemMemoryReset logs to identify any suspicious processes or
daemons(a daemon is a background service that runs continuously to perform tasks or
manage system operations without direct user interaction).

I will zero in on entries that consistently appear across all my devices, frequently recurring
even within a single log, and emphasize the most alarming and significant findings:

The 'remoteparingdeviced' (appx. IMG0001) is a daemon, which is a background
process that manages remote device pairing, such as Bluetooth or Wi-Fi connections.
This is suspicious because I always have both Wi-Fi and Bluetooth turned off on my
iPhone and on the iPad, the settings for remote pairing are disabled. Given that
remoteparingdeviced is related to device pairing over these connections, its presence in
the logs raises concerns, as it shouldn’t have been active under these circumstances.

The 'peopled' (appx.) process on iOS is a system service responsible for managing and
processing contact-related data. It handles tasks such as syncing contacts across
devices, managing people-based features like FaceTime, and assisting Siri with
personalized suggestions. Despite having 'Lockdown Mode' enabled, 'Siri' off,
'FaceTime' deleted, and 'sharing' disabled, 'peopled' is running on my device.

13

The 'remoted' ’(appx. IMG0002’) process on iOS is a system service responsible for
handling remote communication, such as managing connections for remote desktop
access, or other forms of device management over a network. Same applies to this
process.

The ‘managedsettingsagent'(appx. ‘IMG0002’) is a system process on iOS devices
associated with managing settings that are enforced by MDM profiles. The presence of
'managedsettingsagent' on a device that is not enrolled in an 'MDM' system is
suspicious.

The `betaenrollmentd’ (appx.) is a background process in iOS responsible for managing
device enrollment in Apple’s beta software programs, such as the Developer or Beta
Software Program.

The Accountsubscriber (appx.) on an iPhone could be related to handling regular
subscriptions associated with an Apple ID, such as managing active subscriptions to
various Apple services. However, when I observed this process running on my MacBook,
where it is specifically labeled `com.apple.remotemanagement.accountsubscriber` (appx.
IMG_5377) it is more likely to be part of the MDM framework.

The `mdmd` (appx.IMG0007) process is literally associated with Mobile Device
Management systems. This process is responsible for handling communication between
the device and the MDM server, ensuring compliance of configuration settings such as
app installations, password policies, and remote data management. In consumer devices,
however, the presence of the '`mdmd`' process is unusual and concerning. The
appearance of '`mdmd`' suggests that my device may be under unauthorized remote
management, which would indicate a severe security compromise.

The ‘messagesblastdoorservice’(appx.) is a system process related to the iMessage app
on iOS devices. This service is designed to ensure that potentially harmful content is
isolated and handled safely to prevent exploits through message attachments. This
process has been linked to previous iOS exploits, particularly those involving
vulnerabilities in how iMessage handles attachments. For instance, it allowed malicious
actors to send specially crafted messages that could execute arbitrary code on the
device when processed by this service. While these known vulnerabilities have been
patched, the persistence of 'messagesblastdoorservice' in logs, especially if it behaves
unusually, could signal an attempt to exploit potential weaknesses.

Despite 'iMessage' and related services being deactivated on all my devices, I noticed it
still consistently appeared in the logs. Upon further inspection, I found that the Messages
app was connecting to an Apple server used exclusively for MDM (appx.IMG_0067), even
with Lockdown Mode enabled. This suggests that it may have been used to deliver an
MDM payload.

The Dasdelegateservice (appx. IMG0041) on iPhones handles the activation process of
the device, ensuring it connects to Apple's activation servers. It is responsible for
verifying the device's legitimacy, processing the activation request, and provisioning the
device for use with an Apple ID or carrier network. The parent process of
'`dasdelegateservice`' here is unknown again, it may suggest the process was triggered
by a background system task or service not explicitly logged.

14

However, it also raises the possibility that the process could have been exploited by a
malicious source, potentially using it to activate unauthorized secondary accounts or
execute harmful tasks under the guise of legitimate system activity.

The cloudd (appx.IMG0005) process on iOS is a system process related to 'iCloud' and
cloud-based services. It is responsible for syncing data between the device and Apple's
cloud infrastructure, handling tasks like backups, app data synchronization, and other
cloud-related operations. This process operates in the background and is essential for
ensuring that data across devices is kept up-to-date and consistent, especially with
services like 'iCloud Drive' and 'iCloud Backup'. The parent is unknown again, and on my
iPhone, iCloud has not been set up.

The process logs mention "C2," this could indicate a connection to a Command and
Control server. In legitimate contexts, this could refer to Apple's internal infrastructure for
managing communication between devices and iCloud services, ensuring that updates,
commands, and synchronization instructions are properly communicated between the
device and Apple's cloud. However, the mention of C2 is also associated with malicious
activity in cybersecurity, where a device communicates with an external server controlled
by an attacker.

Also note that MMCS is mentioned, which stands for mobile management cloud service.
This is a system used by Apple for managing devices, especially in enterprise
environments. It is part of the infrastructure for MDM. When ‘cloudd’ is interacting with
MMCS, this may indicate that the device is receiving management commands. The
parent process being unknown, the presence of "C2" and interactions with MMCS in this
context raises notable red flags, though still speculative, it is suggesting possible
unauthorized external control.

UTun interfaces (appx. IMG007)
In reviewing several iOS logs, I noticed the presence of multiple UTun interfaces (e.g.,
utun0, utun1, utun2)—indicating the initiation of several UTun interfaces. These interfaces
are typically associated with VPN connections or other types of network tunneling, which
are crucial for securing communication between a device and external networks. While
these can be a normal part of iOS’s internal behavior—such as when managing VPN
connections—there’s a lack of proper documentation around their use by default. In my
case, however, no VPN setup was configured, making their presence more concerning.

Without clear, reliable documentation or sources explaining why these interfaces were
active, it becomes more likely that the device is routing traffic through a VPN or tunnel
without my consent. This raises the possibility of a malicious actor leveraging these
tunnels to intercept network traffic, potentially exfiltrating sensitive data or bypassing
security measures. Given these findings, it’s critical to investigate the nature of these
connections further. Are they part of a legitimate setup, or could the device indeed be
compromised, with unauthorized data manipulation occurring under the radar?

The `assistant_cdmd` (appx. IMG002) process is part of the infrastructure that supports
Apple's Siri and voice assistant services. It is primarily responsible for managing and
synchronizing the data used by Siri to process voice commands, such as contacts,
reminders, and other personal data. On my MacBook, remember I noticed unusual
behavior involving Siri. This odd activity, coupled with the unexpected changes to Siri
settings, raised immediate concerns.

15

This connection suggests that, despite my efforts to disable Siri entirely, the process was
still being utilized in the background. The presence of this log entry, alongside the
unexplained changes to my Siri settings, hints that Siri may be being used to remotely
control and issue commands to my device. By opening the `srsupporttool` logs(appx.)
within the sysdiagnose folder, I came across more Siri-related issues:

The error message `SRErrorNoAuthorization` and the associated `Error
Domain=SRErrorDomain Code=1` suggest that the tool is attempting to access or interact
with certain data or configurations related to Siri, but it does not have the required
authorization or permissions to do so. Specifically, it is failing to list various data stores
and client configurations because of authorization restrictions.

- Failed to list datastore: The tool attempted to retrieve information about stored data but
lacked proper authorization.

- Failed to list clients: The tool was unable to list clients or systems associated with Siri or
other services.

- Failed to list stateCache, configurations, defaults: Similarly, these operations failed due
to a lack of authorization.

In simpler terms, the `srsupporttool` is trying to gather or interact with Siri-related data but
is being blocked due to permission issues. This again reinforces my observations that Siri
is in fact, still active, but running with elevated system permissions, possibly enforced by
a rogue MDM profile. This is further supported by resetting the hidden Siri suggestions
within settings, where I found several deleted apps still engaging with Siri, eventhough Siri
has been turned off throughout the system(appx.).

In reviewing more logs from my iPhone 13, several unusual patterns emerged, particularly
in the context of trial data that could suggest possible security risks, further hinting that
developer mode was actived or unwanted experimental trials were running.

Key Findings(appx.):

1. Forced Disambiguation and Persistent Prompt Overrides

 Multiple log entries indicate forced overrides for app selection and system prompts,
which might suggest tampering or manipulation of user interactions.

 - Log Entries:

 `[TRIAL ROLLOUT INFO] Line 20: - factor:
AppSelection.ForcedDisambiguationAppOrder`

 `[TRIAL ROLLOUT INFO] Line 157: - factor: ForcePromptRateOverride`

 `[TRIAL ROLLOUT INFO] Line 634: - factor: forcedDisambiguationSampleRate`

2. Network Proxy Configuration and Bypass Mechanisms

 Several logs reveal updates to network proxy settings and bypass mechanisms like
`ByPassServerFlow`, hinting at possible remote access or external control of network
traffic.

 - Log Entries:

 `[TRIAL ROLLOUT INFO] Line 319: - namespace:
NETWORK_SERVICE_PROXY_CONFIG_UPDATE`

 `[TRIAL ROLLOUT INFO] Line 1760: - factor: ByPassServerFlow`

16

 `[NAMESPACE COMPATIBILITY] Line 174: -
NETWORK_SERVICE_PROXY_CONFIG_UPDATE`

3. Siri Network Traffic and Experimental Features

 Despite Siri being disabled, logs referencing network traffic and A/B testing suggest
possible manipulation of Siri-related processes, which could indicate that experimental
features are running in the background.

 - Log Entries:

 `[TRIAL ROLLOUT INFO] Line 666: - namespace: SIRI_NETWORK_TRAFFIC_CLASS`

 `[NAMESPACE COMPATIBILITY] Line 299: - SIRI_NETWORK_ENABLEMENT`

 `[NAMESPACE COMPATIBILITY] Line 337: -
SIRI_UNDERSTANDING_CAM_AB_TESTING`

4. Monitoring and Stability Control Mechanisms

 Logs pointing to system monitoring tools such as
`OS_ANALYTICS_STABILITY_MONITOR` suggest external oversight or configuration
control, potentially indicating an ongoing attempt to influence system stability or behavior.

 - Log Entries:

 `[NAMESPACE COMPATIBILITY] Line 178: - OS_ANALYTICS_STABILITY_MONITOR`

 `[NAMESPACE COMPATIBILITY] Line 303: -
SIRI_PLAYBACK_CONTROLS_TAPTORADAR_CONFIGURATION`

5. Network Settings and Remote Viewing

 Entries related to `AVCONFERENCE_NETWORK_SMART_BRAKE` and
`NETWORK_SETTINGS` suggest hidden network configurations or data collection
methods, potentially allowing remote monitoring or manipulation of network behavior.

 - Log Entries:

 `[NAMESPACE COMPATIBILITY] Line 18: -
AVCONFERENCE_NETWORK_SMART_BRAKE`

 `[NAMESPACE COMPATIBILITY] Line 176: - NETWORK_SETTINGS`

If developer mode is active and/or experimental trial features are running, this could
explain the unusual activity observed in the logs. While UTun interfaces and trial-related
entries might be part of standard internal processes for development, their presence in
conjunction with unexpected network behavior raises concerns about potential
unauthorized access, data manipulation, or external control mechanisms.

Overview of a Stacks Log
A Stacks log in iOS is a type of diagnostic log that tracks the activity and interactions
between various components of the system, particularly in the context of stack traces. A
stack trace provides a snapshot of the sequence of function calls that lead up to a specific
event, such as an error, crash, or system function call. These logs are helpful for
understanding the flow of execution in an app or system process, especially when
debugging or troubleshooting issues related to performance, crashes, or unexpected
behavior. I will show the result of one of these logs, though there are many, all of which
contain similar entries.

17

Key Findings(appx.):
Total Lines Analyzed: 14,165
Suspicious Occurrence Counts by Keyword:
- `bug_type`: 2 occurrences
- `crash`: 11 occurrences
- `AppleSPU`: 31 occurrences
- `Skywalk`: 34 occurrences
- `AppleIP`: 1 occurrence
- `proxy`: 1 occurrence
- `waitEvent`: 1,114 occurrences
- `kernel`: 73 occurrences
- `pageFaults`: 598 occurrences
- `TH_UNINT`: 503 occurrences

Possible Kernel Exploitation
The `bug_type` entries point to critical system-level faults, typically associated with kernel
panics. One specific entry (`bug_type 288`) is sometimes linked with buffer overflows,
resulting in privilege escalation or kernel memory corruption. This could indicate an
attempt to compromise the system's core functionality or gain unauthorized access to
restricted areas of memory.

Log entry:
 `json
 {"bug_type":"288","timestamp":"2024-11-23 19:58:06.00 +0100","os_version":"iPhone OS
18.1 (22B83)","incident_id":"74A1FD84-C3F1-4C55-A4E0-6F15F1C05C89"}`

The appearance of `bug_type 288` is noteworthy, as it could indicate an attempt to exploit
kernel-level vulnerabilities. The type of fault observed could be used in privilege escalation
attacks, potentially allowing malicious code to access kernel memory and manipulate the
system at a deep level. This is a common technique for gaining root access and installing
malware such as rootkits.

Cryptographic Manipulation (AppleSPU)
The frequent references (31) to `AppleSPU` are concerning, as this unit is responsible for
encryption and cryptographic operations. Such elevated activity is not typical in a standard
consumer device. Even more so since I configured my iPhone with only a few essential
apps installed and most options disabled, thus suggesting the possibility of unauthorized
encryption or data exfiltration attempts.

- Function: SPU Encryption Service
- Content:
 `json {"name":"AppleSPU_ep36","timestamp":"2024-11-23 20:00:12.45
+0100","os_version":"iPhone OS 18.1 (22B83)"}`
- Reported By: AppleSPU
- Process: EncryptionDaemon

- Function: Task Communication with AppleSPU
- Content: `json {"name":"AppleSPU_task","timestamp":"2024-11-23 20:01:37.22
+0100","process":"AppleSPU_task","reporter":"AppleSPU"} `
- Reported By: AppleSPU
- Process: AppleSPU_task

18

Frequent cryptographic activity, especially when coupled with processes like
`EncryptionDaemon` and `AppleSPU_task`, could indicate that malicious software is
encrypting sensitive information for data exfiltration. This type of behavior is consistent
with spyware or malware that seeks to obfuscate its communications, making it harder for
security systems to detect unauthorized data transfers. In particular, AppleSPU
involvement suggests a direct attempt to manipulate or intercept encrypted data.

Thread Issues
A significant number of `waitEvent` entries (1,114) and `TH_UNINT` (503) suggests that
certain system threads are being intentionally locked or blocked. This behavior is often a
tactic used by malicious code to prevent termination or avoid detection by normal system
processes. Uninterruptible threads (denoted by `TH_UNINT`) indicate threads that cannot
be interrupted or killed by the operating system, often a technique used by rootkits to
remain persistent on the system.

- Function: System Resource Lock
- Content: `json {"waitEvent":[15125547283677275499],"timestamp":"2024-11-23
19:58:56.00 +0100"}`
- Reported By: Thread Manager
- Process: system_resource_manager

- Function: Thread in Uninterruptible State
- Content: `json {"name":"TH_UNINT","timestamp":"2024-11-23 20:04:33.12
+0100","process":"Thread_Manage_Daemon"} `
- Reported By: Kernel Task
- Process: Thread_Manage_Daemon

The occurrence of these uninterruptible threads suggests potential tampering with the
system, possibly by a rootkit or other malicious software, which seeks to lock system
resources or prevent itself from being detected and terminated. The system could be
manipulated to mask ongoing malicious processes or create deadlocks where malicious
code is intentionally locked into memory or CPU resources to evade detection.

Network Anomalies
The `Skywalk` and ‘IPSec’ references point to anomalous network activity, suggesting that
the device might be engaged in unauthorized tunneling or packet manipulation. `Skywalk`
is a network stack component responsible for low-level packet processing, and its frequent
usage in these logs suggests potential network-based attacks. Also, the appearance of
`AppleIP` dormancy is unusual, as consumer devices typically do not use this feature
unless configured with a proxy.

- Function: Packet Forwarding via Skywalk
- Content:`json {"network":"Skywalk","timestamp":"2024-11-23 20:05:02.89
+0100","os_version":"iPhone OS 18.1 (22B83)","reported_by":"Skywalk"}`
- Reported By: Skywalk - Process: PacketProcessingDaemon

- Function: AppleIP Dormancy Handler
- Content: ```json
 {"name":"AppleIP_dormancy","timestamp":"2024-11-23 20:06:18.12
+0100","process":"NetworkDormancyDaemon","status":"active"}`
- Reported By: AppleIP - Process: NetworkDormancyDaemon

19

- Function: Proxy/Tunneling Detection
- Content: `json {"network":"proxy","timestamp":"2024-11-23 20:07:45.32
+0100","process":"ProxyMonitor"}`
- Reported By: ProxyMonitor
- Process: ProxyMonitor

The logs show signs of network tunneling or the use of proxy services, which are common
methods used by malware to exfiltrate data without detection. The presence of multiple
`Skywalk` entries and the `AppleIP_dormancy` entry suggests that the device may be
routing its traffic through unauthorized channels. The `proxy` entry is particularly alarming,
as it’s presence indicates a proxy was detected, while I have not configured one.

Memory Issues
The logs show a high count of `pageFaults` (598), which is atypical for a standard
consumer device. Frequent page faults often indicate issues like memory leaks, memory
corruption, or the intentional manipulation of memory regions, which is consistent with the
behavior of advanced malware attempting to access restricted memory areas. This could
suggest an ongoing attempt to bypass system protection mechanisms or manipulate
system memory to evade detection.

- Function: Page Fault Triggered
- Content: `json {"name":"pageFaults","timestamp":"2024-11-23 20:10:45.78
+0100","process":"MemoryAccessHandler"}`
- Reported By: Kernel Memory Manager
- Process: MemoryAccessHandler

- Function: Kernel Memory Paging
- Content:`json {"name":"pageFault","timestamp":"2024-11-23 20:12:02.90
+0100","process":"KernelMemoryPagingDaemon"}`
- Reported By: Kernel Memory Manager
- Process: KernelMemoryPagingDaemon

The high frequency of page faults, especially involving kernel memory paging, could
suggest that malicious software is attempting to access or manipulate protected memory
areas. This aligns with tactics commonly used by rootkits, which attempt to manipulate the
operating system's memory management to evade detection and maintain persistent
access to the device.

Summary
1. Kernel Exploitation: The `bug_type 288` entries could suggest an attempt to exploit
kernel memory and escalate privileges.
2. Cryptographic Manipulation: Frequent `AppleSPU` entries may indicate the presence of
malware performing unauthorized encryption and potentially exfiltrating data.
3. Thread Issues: Unusually high counts of `TH_UNINT` and `waitEvent` entries suggest
that threads are being deliberately locked or manipulated, possibly by a rootkit.
4. Network Anomalies: Entries related to ‘IPSec’, `Skywalk`, `AppleIP`, and `proxy`
suggest unauthorized network tunneling or proxy usage, could indicate spyware.
5. Memory Issues: A high count of `pageFaults` points to potential memory manipulation,
which is consistent with advanced malware techniques attempting to access or manipulate
system memory.

20

Additional Logs examined(appx.)
After an examination of additional logs, more suspicious entries were found that point to
potential malware, rootkit activity, or advanced spyware. The findings suggest possible
unauthorized tampering, memory manipulation, process spoofing, and code-signing
anomalies.

App Crash with SIGABRT Signal in `Lirum Info Lite`

App Crash Report (EXC_CRASH with SIGABRT)
Log Entry:
`plaintext
"exception" : {"codes":"0x0000000000000000, 0x0000000000000000",
"rawCodes":[0,0],"type":"EXC_CRASH","signal":"SIGABRT"},
"termination" : {"flags":0,"code":6,"namespace":"SIGNAL",
"indicator":"Abort trap: 6","byProc":"Lirum Info Lite","byPid":2428},
"asi" : {"libsystem_c.dylib":["abort() called"]},`

The log indicates an EXC_CRASH exception triggered by a SIGABRT signal, which is
typically used to deliberately terminate a process. The presence of an `abort()` call within
libsystem_c.dylib suggests that the crash was initiated intentionally. This could be a result
of an integrity check failure, memory corruption, or external interference such as a rootkit.
This crash pattern is often associated with anti-tamper measures in malware, where the
app is intentionally aborted to avoid detection.

Code-Signing Anomaly Detected
Log Entry:```plaintext
"codeSigningMonitor" : 2,
"incident" : "7A34DA96-EF4C-4CEB-8C1B-0DA211677FD3",
"pid" : 2428,```

The Code Signing Monitor (CSM) entry indicates a mismatch or unauthorized modification
of signed code. A value of `2` signals a potential violation of code-signing integrity, which is
a strong indicator of malicious code injection or tampering. Malware often modifies system
processes or applications to bypass security controls, leading to a code-signing anomaly.

 Suspicious Memory and Resource Manipulation in
`PerfPowerServicesSignpostReader.cpu_resource.ips`

Virtual Memory Summary with 100% Unallocated Memory
Log Entry:
```plaintext "vmSummary" : "ReadOnly portion of Libraries: Total=1.4G resident=0K(0%)
swapped_out_or_unallocated=1.4G(100%)
Writable regions: Total=835.5M written=657K(0%) resident=657K(0%)
swapped_out=0K(0%) unallocated=834.8M(100%)",``

The log indicates that 100% of writable and non-writable memory regions are unallocated, 
which is highly unusual. Unallocated memory suggests potential memory tampering, 
where malware may be manipulating the system’s virtual memory to erase traces or evade 
detection.  

21



‘Unknown’ Processes with Root Privileges
Log Entry:
```plaintext
On Behalf Of: 4 samples UNKNOWN [4760] (originated by UNKNOWN [383])
Parent: UNKNOWN [1]
UID: 0```

The presence of multiple UNKNOWN processes with UID: 0 (root privileges) suggests
possible malicious activity. Legitimate iOS processes are clearly identifiable, but
UNKNOWN processes operating with root privileges could point to cloaked malware or a
rootkit that is attempting to hide its activity.

These ‘UNKNOWN’ entries are abundant in every single log on my device. This behavior
indicates the possibility of hidden malicious processes that are running with elevated
privileges, often as part of a rootkit or stealth spyware designed to persist undetected.

Unresolved Stacktrace Entries
Log Entry:
```plaintext
1  ??? (Foundation + 15692) [0x1893e8d4c]
1  ??? (libobjc.A.dylib + 15544) [0x187ae3cb8]```
 
The `???` entries in the stacktrace indicate that the log is unable to resolve function calls, 
which could be a sign of code injection or tampered system calls. A rootkit or malware 
often uses these techniques to hide its activity by modifying system frameworks or 
injecting malicious code into critical parts of the operating system.

These ‘???’ entries are abundant in every single log on my device. These unresolved 
entries could be the result of malicious code inserted into system frameworks, for the 
purpose of hiding its presence or manipulating system functions.

Heavy Disk Usage and Unauthorized System Calls in `Files-2024-12-02-000845.ips`

Excessive Disk Writes
Log Entry:
```plaintext
Writes: 1073.75 MB of file backed memory dirtied over 28258 seconds (38.00 KB per
second average)```

"File-backed memory dirtied" refers to memory that has been modified and needs to be
written back to disk, typically for files that are mapped into memory. While this is a normal
system behavior for caching or memory management, excessive or unusual dirtification
could indicate attempts by malware to evade detection by keeping data in memory
temporarily before committing it to disk. If seen in conjunction with other suspicious
behavior (like high disk writes or syscall violations), it could point to malicious obfuscation
tactics or data exfiltration efforts.

Syscall Filter Violation
Log Entry:
```plaintext
"syscallFilterViolation": {"filterType": "unknown", "attemptedSyscall": "open"}```

22



The log shows a violation of a syscall filter, with an attempt to execute a blocked open 
syscall. This could indicate that the malware is attempting to bypass system restrictions 
and access protected resources, a common tactic used by advanced malware or rootkits 
to evade detection.

Possible of Rootkit Activity in `searchd.diskwrites_resource-2024-11-23-122231.ips`

Abnormal Memory Allocation
Log Entry:```plaintext
VM page size: 16384
malloc_zone_statistics: {... "vm_size": "5242880", "zone_name": "DefaultMallocZone"}```

The memory allocation statistics show unusually large memory allocations, which may 
indicate that malware is manipulating memory or creating hidden areas in the virtual 
memory space. This is common in rootkits, which attempt to obscure their activity by 
modifying memory management.

WhatsApp Misattribution
Log Entry:```plaintext
1 sample WhatsApp [7708] (1 sample originated by WhatsApp [7708])```

This log entry shows WhatsApp being misattributed as the origin of low-level disk writes. 
This misattribution suggests possible process spoofing or application hijacking, where 
malware is disguising itself as a legitimate application. This could indicate that the malware 
is using WhatsApp's process as a cover to perform its own malicious activities, or that 
WhatsApp has been sideloaded from an unofficial source.

Summary
1. Crash with SIGABRT (App Integrity Check Failure): Possible tampering or external 
interference with application processes.
2. Code-Signing Anomaly: Indicates unauthorized code modification, possibly by malware 
attempting to bypass security.
3. Constant presence of ‘Unknown’ Processes with Root Privileges: Could suggest the 
presence of cloaked malware or rootkits running with elevated privileges.
4. Excessive Disk Writes: Points to possible data exfiltration or extensive logging, typical of 
spyware.
5. Memory Manipulation: Unallocated memory and abnormal memory usage are strong 
signs of malware tampering or rootkit activity.
6. Blocked Syscalls and Spoofed Processes: Possible process hijacking or malware 
evasion tactics.

RTBuddy Processes: Persistent Monitoring and Potential Tampering  
In this analysis, I observed repeated entries from RTBuddyCrashlogEndpoint across 
various hardware subsystems. These entries point to specific system-level services that 
are typically essential for device operations.

Subprocesses Identified:
- RTBuddyCrashlogEndpoint(MTP): Associated with Media Transfer Protocol, which is 
typically used for transferring files between the device and other systems.
- RTBuddyCrashlogEndpoint(PMP): Linked to Power Management Protocol, responsible 
for controlling device power usage.

23



- RTBuddyCrashlogEndpoint(GFX): Related to the Graphics subsystem, which handles the 
rendering of graphical elements on the device.
- RTBuddyCrashlogEndpoint(AOP): Tied to the Always-On Processor, which manages low-
power tasks like sensor management.

The RTBuddy subprocesses themselves are default system components and are part of 
typical device diagnostics and monitoring services. However, their repeated and excessive 
logging is a suspicious sign. While these subprocesses are not inherently malicious, their 
constant monitoring and high frequency of logs across multiple hardware subsystems 
points to a possible compromise.

Advanced rootkits often exploit real-time diagnostic services like RTBuddy to hide their 
activities. By doing so, the malware remains stealthy while monitoring and manipulating 
system behavior. The fact that these entries appear across multiple subsystems, 
especially in this high frequency and scope, it indicates that the system may be under 
persistent surveillance.

modelcatalogdump.ips: Errors and Timeout Anomalies  
This log highlights several system and application errors that suggest potential 
interference, which could be indicative of root-level malware or unauthorized tampering.

Examples:
- [Error: 0xdead10cc] Task Timeout Exceeded:  
   This error signifies that a task exceeded its allocated time limit. Task slowdowns or 
failures are common indicators of malicious interference, where malware may intentionally 
introduce delays or disrupt normal operations to mask its presence.
  
- Unresponsive State Detected: MobileAsset Service:  
   The MobileAsset service, which is responsible for managing updates and system 
resources, is reported as unresponsive. This suggests that malware may be deliberately 
disrupting system updates or critical operations to prevent detection or prevent 
remediation.

Persistent timeouts and errors in critical services such as MobileAsset point to potential 
malware activity. The failure of key tasks may be due to malware attempting to delay or 
block certain operations, such as system updates or data transfers, in order to maintain 
control or avoid detection.

CPU Exploitation and Malformed Messages  
This log revealed suspicious spikes in CPU usage and issues with kernel-level 
communication.
- High CPU Usage:
  - Process: ‘Unknown’ ID (CPU Utilization: 92%):  
   This indicates (once again) that an unknown process is consuming a significant amount 
of CPU resources. When a process uses an abnormal amount of CPU without a clear 
identification, it suggests potential obfuscation tactics by malware or an advanced rootkit.
- Malformed Kernel Messages:
  - KernelMessage: Malformed Packet Detected:  
   This entry shows that the kernel detected a malformed packet, indicating that malicious 
software may be tampering with system communication. Rootkits often inject rogue 
packets into kernel-level processes to alter or hijack system functions.

24



Summary
1. RTBuddy Processes: While these processes are typically legitimate, the frequent 
logging across multiple subsystems raises suspicion that they may be exploited by 
malware to maintain persistent surveillance or manipulation of the system.
2. System Errors and Timeouts: Persistent errors and timeouts in critical services suggest 
that malware is intentionally disrupting normal operations to avoid detection or gain control 
over the system.
3. CPU Exploitation and Malformed Messages: Unknown processes consuming excessive 
CPU and tampering with kernel messages suggest kernel-level compromise, a typical sign 
of a rootkit. 

Conclusion
The system log analysis raises several concerns that could point to potential malicious 
activity, including advanced malware, rootkits, or spyware. There are indications that 
kernel vulnerabilities might be exploited for privilege escalation, along with unusual 
cryptographic activity involving the AppleSPU, which could suggest unauthorized 
encryption or data exfiltration. Additionally, suspicious thread issues, network anomalies, 
and memory manipulation could be signs of sophisticated malware attempting to evade 
detection and maintain persistent control over the device. Other anomalies, such as 
code-signing violations, irregular disk writes, unresolved stack traces, and the potential 
misuse of RTBuddyprocesses for real-time monitoring, further support the possibility of 
unauthorized tampering.


What’s particularly chilling is the unsettling possibility that Apple’s cutting-edge machine 
learning and voice assistant technologies, which are supposed to make our lives easier, 
are being turned against us. In this case, it seems that the very systems designed to 
assist and safeguard the user could be manipulated for malicious purposes. 


If true, this attack is sophisticated, suggesting that the same artificial intelligence that 
we’ve come to trust and rely on for convenience is now playing the role of an uninvited 
guest—or worse, a digital puppet master. It’s a stark reminder of how AI can be both our 
greatest ally and our potential adversary. As I dig deeper into how this attack might 
operate, I’ll reveal how Apple's own state-of-the-art technologies, designed to better our 
experience, might instead be wielded against us in a high-tech game of digital mischief.


Hasta la vista 
If Apple’s own state-of-the-art tech is being weaponized against me, well, that triggered 
me to go full tech vigilante. Rather than quietly accept my fate, I decided to take a stand 
by using the very latest AI systems myself to further dissect iOS with a level of precision 
Siri could only dream of—because, clearly, I wasn’t about to let a rogue AI play puppet 
master with my devices. After all, if Siri’s clever enough to change my settings without 
permission, then it’s time for me to outwit the system using the latest tools at my 
disposal.


It’s now officially man versus machine, and with Terminator 2 being one of my all-time 
favorite movies, I couldn’t help but feel a little like Arnold Schwarzenegger—especially 
since I’m at the gym daily. I mean, if I'm going to battle rogue AI, I might as well channel 
my inner T-800, right? If Siri thinks it can mess with my settings, well, I’ve got a few digital 
moves of my own to make—Hasta la vista, Siri!


25



6. Hidden Menace: Uncovering the Scope 
In this chapter, I will describe the process I followed to analyze the sysdiagnose output 
from my devices. Sysdiagnose is a powerful utility that collects and organizes logs, 
performance data, and system metrics, providing a detailed snapshot of an iOS device's 
operation. While sysdiagnose can be an invaluable resource for troubleshooting system 
issues, it generates files that are not easily interpretable without the appropriate tools. 
These tools, such as Console and Xcode, are native to macOS, which, unfortunately, I did 
not have access to as I have explained earlier. As a result, I had to adopt a more 
traditional, yet necessary, approach to interpret the data.


Specifically, I began by reading every log line by line. While this method was time-
consuming and tedious, it was necessary to identify specific patterns and clues. During 
this process, I focused on key areas that could indicate potential problems or unusual 
behavior, including:


- MDM: Signs of device management configurations that could influence system behavior 
or security settings.

- Network activity: Information related to network connectivity, traffic, and potential 
anomalies.

- Sharing activity: Data related to the sharing of information between devices or services, 
potentially revealing unauthorized activity. 

- Remote Control Activity: Indicators of any remote access or control over the device.

- Other Unusual Signs: Any anomalies or patterns that deviated from the typical operation 
of the device.


It is important to note that if the device is compromised, the sysdiagnose output may be 
incomplete or altered. However, there are always breadcrumbs—small traces left behind
—that can reveal discrepancies or unusual activity, and it is these that I am actively 
searching for in my analysis.


A Hybrid Approach 

While the line-by-line manual review provided some insight, the sheer volume of logs and 
the presence of specialized Apple jargon made it challenging to fully comprehend every 
detail. As I mentioned in the introduction, many of the terms and messages found in 
sysdiagnose logs are specific to Apple’s operating systems and are not always easily 
understood without deeper knowledge of the internal workings. Some entries were 
particularly difficult to verify due to the technical nature of the logs, and many contained 
proprietary Apple terminology that lacked clear documentation for third-party researchers.


To address these challenges, I incorporated artificial intelligence (AI) systems into my 
analysis. AI tools enabled me to process and categorize the data more efficiently, helping 
to identify potential issues based on patterns and previous case studies of similar 
sysdiagnose files. The AI models I used helped to detect abnormal behaviors, such as 
unusual network activity or signs of remote control, which I could then cross-reference 
with the patterns identified during the manual review process. This hybrid approach, 
blending traditional investigative methods with modern AI technology, allowed me to 
interpret sysdiagnose logs with greater efficiency and accuracy.


26



Despite these advancements, some parts of the data remained difficult to verify 
independently. However, I applied common sense and logical reasoning to fill in these 
gaps. By considering the broader context of the device’s behavior, potential threats, and 
the specific conditions under which the sysdiagnose files were generated, I was able to 
make better informed judgments about the significance of certain entries. I will note the 
most significant findings in subsections related to the sysdiagnose output.


MCSTATE(appx.) 
The MCState folder in a sysdiagnose archive contains data related to a device’s 
enrollment and state within a MDM system. I noticed several disceprancies between the 
configurations. First up, the MCMETA.plist file. Within the User folder, it showed the latest 
build version of the OS, designated as ’LastMigratedBuild’. 


Within the Shared folder however, there is also a mention of ‘LastMDMMigratedBuild’. 
Though not conclusive evidence, it does warrant further investigation. Back to the User 
folder, where I came across Truth.plist and EffectiveUserSettings.plist files.


- The truth.plist reflects user configuration settings as shown in the User Interface

- The effectiveusersettings.plist, on the other hand, shows the actual ‘effective’ settings 
that are currently enforced on the device, accounting for any modifications, overrides, or 
changes that may have occurred.


Could the essential settings I had enabled or disabled on my devices be overruled and 
that I, the user, am oblivious to the fact that other settings are essentially in place? After 
thoroughly examining the data, I uncovered conclusive evidence that MDM policies were 
being enforced without my knowledge or consent.  

These policies have the ability to remain hidden within the device's user interface, 
effectively masking their presence. It became crucial to check both files to determine 
which settings were actually active on my device, as this was the key to understanding 
the extent of the unauthorized management and control being exerted.


Opening and examining the files 
I decided to examine the files using a tool that was fortunately available through the App 
Store, as .plist files cannot be opened by default. What I uncovered was staggering and 
confirmed my biggest fear: certain settings were enforced on my device without my 
knowledge or consent, despite my attempts to disable them.


I will now walk you through the most important settings that were active on my device, 
but had been turned off by me or should not have been active while in Lockdown Mode. 
These findings shed light on how data could be extracted from my device, how privacy 
could be compromised, and how certain settings were being bypassed or ignored.


This analysis ultimately led me to my final examination of my research, where I hoped to 
find further evidence of unauthorized management or breaches. By combining my new 
knowledge of the actual active settings and the information within the security- and 
network log files, I was able to formulate a theory on how this exploit persists, how it 
evades detection, and why it continues to operate under the radar, even in environments 
where users believe they have taken all necessary precautions.


27



Within the Property List files, we come across ‘boolean values’. These are used to 
represent binary states—either true or false. These values are employed to control 
specific settings or behaviors within an application or system configuration.


-When a boolean value is set to true, it means that a feature or setting is enabled or 
active.

-When a boolean value is set to false, it indicates that the feature or setting is disabled or 
inactive.


The actual enforced settings on my devices are mind-blowing: 

allowMDMEnrollment = true


postsetupprofilewasinstalled = true


allowEnterpriseAppTrust = true


allowProximitySetupToNewDevice = true


allowOpenFromManagedToUnmanaged = true


allowAirPrintiBeaconDiscovery = true


allowVideoConferencingRemoteControl = true


allowRemoteScreenObservation = true


allowiPhoneMirroring = true


allowRapidSecurityResponseRemoval = true


allowUnmanagedToReadManagedContacts = false


allowUninstalledAppNearMeSuggestions = true


allowUntrustedTLSPrompt = true


allowAirPrintCredentialsStorage = true


allowClassroomAppLock = true


allowClassroomAirPlay = true


allowAppClips = true


allowMultiplayerGaming = true


allowGameCenterNearbyMultiplayer = true


allowGameCenterProfilePrivacyModification = true


allowRemoteAppPairing = true


allowFindMyCar = true


allowSharedDeviceTemporarySession = true


allowScreenRecording = true


28



allowPasswordSharing = true


allowFilesNetworkDriveAccess = true


allowVPNCreation = true


allowManagedAppsCloudSync = true


allowUIConfigurationProfileInstallation = true


allowClassroomAppLock = true


allowRemoteScreenObservation = true


allowMarketplaceAppInstallation = true


allowUnpairedExternalBootToRecovery = false


allowHostPairing = true


allowClassroomLockDevice = true


allowUninstalledAppNearMeSuggestions = true


allowFindMyFriendsModification = true


allowESIMOutgoingTransfers = true 


Implications 

The presence of these enforced (thus active) settings within my iOS devices, as outlined, 
provides substantial evidence of remote access and device monitoring. Key 
configurations, such as allowVideoConferencingRemoteControl, 
allowRemoteScreenObservation, and allowAirPrintiBeaconDiscovery, indicate that the 
device can be remotely controlled, observed, and interacted with through various means, 
including video conferencing tools and networked peripherals. 


The allowRemoteAppPairing, allowManagedAppsCloudSync, and 
allowOpenFromManagedToUnmanaged settings further demonstrate that external entities 
can pair with, manage, and synchronize data across devices, potentially without user 
consent or awareness.


The settings also suggest developer-level activity. Specifically, the 
allowEnterpriseAppTrust and allowMarketplaceAppInstallation settings signals that beta- 
and unsigned party apps outside the official app store and hidden configurations could 
be surreptitiously installed and trusted. This opens the possibility of exploiting these 
features to inject custom, potentially harmful software into the device. Moreover, settings 
like allowOpenFromManagedToUnmanaged may allow covert sharing or movement of 
sensitive data between applications, further exposing the device to malicious activity.


The implications of these findings are particularly concerning when considering the 
possibility of device cloning or duplication. With settings like 
allowUnmanagedToReadManagedContacts, and allowESIMOutgoingTransfers, the device 
could be part of a scheme to mirror its contents or replicate its identity—potentially even 
copying its phone number and associated services. 


29



This opens the door to a wide range of exploits, including the ability to run a replica of the 
device in a virtual machine, thereby gaining full access to the device's data, apps, and 
services without detection. I will come back to this with more supporting evidence.


The allowRemoteScreenObservation and allowRemoteAppPairing settings further support 
this, enabling an attacker to manipulate and monitor the device remotely, while the 
allowVPNCreation and allowManagedAppsCloudSync features might facilitate the 
exfiltration of data to external servers or remote locations.


Furthermore, the activation of settings like allowFindMyCar and 
allowGameCenterNearbyMultiplayer suggests that the device is vulnerable to privacy 
breaches, with geolocation data potentially being monitored and transmitted in an 
insecure manner. The ability for an attacker to monitor the device's movement or track its 
location remotely enhances the risk of real-time surveillance or tracking without the user's 
consent. 


Additionally, allowClassroomAppLock, allowUninstalledAppNearMeSuggestions, and 
other similar settings indicate that external parties could dictate the device's interactions 
with other applications, thus controlling its functionality and potentially creating 
backdoors to exploit.


allowRapidSecurityResponseRemoval = true is the most significant find, as this allows 
the removal of Rapid Security Responses, which are emergency updates designed to 
address critical vulnerabilities. The primary concern is that removing these updates leaves 
devices vulnerable to actively exploited vulnerabilities, especially if the patch addresses a 
zero-day exploit or other critical security flaw. The longer the patch is removed, the 
greater the chance that attackers will exploit these vulnerabilities, expanding the system’s 
attack surface.


In environments like Apple’s HomeKit, iBeacon, and IoT devices, where vulnerabilities can 
be targeted remotely, removing RSRs can have severe consequences. The risk is 
particularly high when devices are part of a larger interconnected network, as one 
unpatched vulnerability can lead to broader system exploitation.


Conclusion 

The severity of these findings cannot be overstated. The combination of remote access 
capabilities, insecure communication allowances, and hidden device management 
profiles presents a profound security breach. The device is not only susceptible to 
unauthorized surveillance and data extraction but also to developer-level exploits that 
could allow for complete control or duplication of the device’s environment. 


The possibility of copying a phone and its number, as well as the ability to run a 
virtualized copy of the device, represents a critical vulnerability with far-reaching 
implications for both personal security and privacy. The risk of ongoing monitoring, data 
exfiltration, and even the complete compromise of my device’s identity underscores the 
urgent need for heightened awareness and robust security measures to safeguard against 
these types of attacks.


30



7. iOS Exposed: The Silent Takeover 
In this phase of my investigation, I turned my attention to the security-sysdiagnose log, a 
critical component of the iOS sysdiagnose archive that provides detailed insights into the 
security posture of the device. Having already uncovered troubling signs of remote 
management, hidden MDM profiles, and unauthorized monitoring, I approached this log 
with heightened suspicion, aware that it could either confirm or deepen the scope of my 
concerns. 


As I began to sift through its complex contents, a growing sense of unease set in—the log 
entries began to paint a picture of a device compromised at its core, one that had been 
manipulated in ways that most would regard as inconceivable. What I uncovered in the 
security log not only validated many of my worst fears but also revealed alarming new 
vulnerabilities—further confirming that my device had been silently monitored, controlled, 
and potentially exploited without my knowledge or consent. 


The implications of these findings were profound, suggesting a systemic breach of both 
security and privacy that could affect not only my device but any Apple device nearby 
subjected to similar vulnerabilities. The tension now lay in piecing together how these 
exploits were able to persist undetected, and how they might be leveraged by malicious 
actors to maintain ongoing control.


Security logs(appx.) 

Apple's Secure Enclave is a hardware-based security coprocessor integrated into devices 
like iPhones, iPads, and Macs. It isolates sensitive data, such as encryption keys and 
biometric information, from the main processor, ensuring secure storage and processing. 
With its own secure boot, memory, and storage, the Secure Enclave provides a robust 
layer of protection against unauthorized access, even if the device's operating system is 
compromised. This technology underpins key features like Face ID and Touch ID, 
safeguarding user data and supporting secure authentication processes.


The first entry in the security log indicated the SOS function was disabled on my device. 
At first, I assumed this referred to the emergency SOS call function and was not overly 
concerned. However, upon further examination, I discovered that the SOS entry most 
likely pertained to the Secure Onboarding Service/Storage, a critical security feature 
designed to protect the integrity of sensitive data.


The Secure Onboarding Service is enabled by default on most consumer Apple devices 
and is essential for secure device provisioning, keychain handling, and encryption 
management. This service ensures that sensitive data—such as passwords and biometric 
data used for Face ID or Touch ID—are securely managed within the device's hardware, 
specifically in conjunction with the Secure Enclave. The disabling of SOS on my device, 
therefore, raised significant alarms, as it meant that a fundamental layer of security had 
been compromised or bypassed, either through developer mode, MDM configurations, or 
any other potential unauthorized tampering. 


Evenmore, the disabling of SOS further exposes the device to malicious actors, making it 
easier for them to load untrusted profiles and bypass critical security checks. Without 
SOS, attackers can manipulate configuration settings, install malicious software, or even 
gain persisted remote access to the device. 


31



This could allow for persistent surveillance, data exfiltration, or unauthorized control, such 
as remotely altering security settings or cloning the device’s identity. Essentially, disabling 
SOS weakens the device's defenses, enabling attackers to keep exploiting vulnerabilities 
into eternity.


The next set of log entries was quite extensive. While I could grasp the general meaning, I 
opted to leverage AI for further analysis. Since these logs repeatedly mention my unique 
device IDs, revealing them could potentially expose the device to additional risks, so I will 
only share those specific details with official sources. I instructed the AI to review the 
logs, keeping in mind that SOS was disabled, and to look for any signs of compromise. I 
then cross-referenced these manually. Below, I will summarize the findings by category.


HomeKit and Unauthorized Pairing 
I decided to take a closer look at the HomeKit-related entries in the logs, especially since 
I’ve never used any HomeKit devices. HomeKit is Apple’s platform for managing smart 
home devices like lights, thermostats, and locks. For devices to work together, they must 
go through a pairing process that involves securely exchanging cryptographic keys. 
These keys are stored in the device’s keychain, ensuring that only authorized devices can 
communicate with my HomeKit setup.


The logs I reviewed showed several details about the HomeKit pairing process:


- `accc=<SecAccessControlRef: dk>`: This indicates that the keychain items are protected 
by strict access controls to prevent unauthorized access.

- `acct=<UUID>`: Each HomeKit device has a unique identifier (UUID), which is linked to a 
specific device.

- `agrp=com.apple.hap.pairing`: This shows the pairing entries are tied to the HomeKit 
Accessory Protocol (HAP), which is used during the device pairing process.

- `desc=Identity used to pair with HomeKit accessories`: This entry explicitly states that 
the identities are used to pair with HomeKit accessories.

- `svce=HomeKit Pairing Identity`: This service label confirms that these keychain entries 
are related to the HomeKit pairing process.

- `sync=1`: This indicates that these pairing identities are synced across my Apple devices 
via iCloud, allowing them to be shared within the ecosystem.


From the timestamps in the logs, I found that these HomeKit pairing identities have been 
created over several years, with the most recent entry showing up in September 2024. 
This suggests that multiple HomeKit pairings have occurred on my devices. Since I 
haven’t used any HomeKit devices, these log entries could point to something concerning
—unauthorized pairing. Here are a few possible explanations:


1. Unintended Pairing: HomeKit relies on Bluetooth and Wi-Fi for pairing, and if another 
HomeKit-enabled device was in close range, it might have tried to pair with mine. If my 
device was set to automatically accept pairing requests, it could have unknowingly 
connected.

   

2. Malicious Pairing: It’s possible that nearby malicious devices are attempting to pair with 
mine without my consent. This can happen automatically if the pairing process is 
triggered, allowing unauthorized pairing information to be stored on my device without my 
knowledge.


32



The presence of these HomeKit pairing identities in my keychain is concerning, especially 
since I’ve never intentionally paired any HomeKit devices. This suggests that 
unauthorized pairing could have taken place, potentially due to nearby devices trying to 
connect to mine. While I’m not sure if these pairings were accidental or malicious, the 
possibility of unauthorized access is enough to warrant further investigation.


Auto Unlock 
AutoUnlock is a feature within Apple’s Continuity framework that allows devices, such as 
an Apple Watch, to automatically unlock other devices like a Mac when they are in close 
proximity. This process relies on secure keychain storage to manage the pairing identities 
between devices.


The logs show multiple instances of 'AutoUnlock keychain entries' for devices like the 
Apple Watch, iPhone, iPad, and MacBook dating from 2018 to 2024. Key findings include:

  

- '`acct=com.apple.continuity.auto-unlock.sync`': The account tied to AutoUnlock.  

- '`labl=Auto Unlock: [device]`': Identifies the device involved in the AutoUnlock pairing 
(e.g., Apple Watch).  

- '`svce=UUID`': A unique identifier for each AutoUnlock pairing.  

- '`cdat` and `mdat`': Dates showing when the keychain entries were created and 
modified.


The logs indicate multiple instances of AutoUnlock pairings, including recent ones from 
2024. Since I’ve never enabled this feature or its associated Continuity settings, these 
entries strongly suggest that unauthorized pairings have taken place. It’s likely that the 
feature was triggered automatically, even though it should have been disabled. 
Additionally, Lockdown Mode, which I had activated, should have prevented this from 
occurring, raising concerns about potential security lapses.


Other issues 
The logs also reveal several security-related issues with certificate validation, particularly 
in relation to 'TrustEvaluationEvent' and 'PinningEvent' failures. These entries highlight 
persistent vulnerabilities in the system’s ability to properly validate and trust certificates.


Key findings:  

- Trust Evaluation Failures: The logs show several trust failures ('TrustResult: 4'), meaning 
the system couldn’t establish trust with the provided certificates. There are discrepancies 
with the root certificate validation and OCSP (Online Certificate Status Protocol) failures, 
which could allow compromised certificates to be trusted.  

- Pinning Failures: There are multiple failures related to pinning for services like iCloud and 
Hotmail, indicating that the system may be vulnerable to man-in-the-middle (MITM) 
attacks if attackers bypass certificate checks.  

- Missing OCSP Responses: The absence of OCSP responses suggests that the system 
isn’t properly validating certificate revocation statuses, leaving it vulnerable to accepting 
expired or compromised certificates.  

- TLS Connection Issues: One entry logs a TLS handshake event but with issues like no 
connection resumption or SCT (Signed Certificate Timestamps) validation, which 
increases the risk of fraudulent certificates being used in secure connections.  


33



The repeated trust evaluation failures, pinning mismatches, missing OCSP responses, 
and TLS handshake issues point to significant security vulnerabilities. These weaknesses 
in certificate validation mechanisms expose the system to risks such as certificate 
spoofing and man-in-the-middle attacks. The lack of proper OCSP validation and SCT 
checks suggests that the system may be accepting compromised or fraudulent 
certificates, leaving it highly vulnerable to exploitation.


MDM Activity 
The logs show frequent 'ktOptInGet', 'ktIDSValidateEnrollmentEvent', and 
'ktRunDutyCycle' events, which are indicative of ongoing MDM processes. These events 
suggest that the device is repeatedly checking for enrollment status, validating its MDM 
enrollment, and performing background maintenance tasks typical of managed devices.


However, the presence of these logs on a device that 'should not be under MDM 
management' is concerning. The device is engaging in continuous 'enrollment checks' 
and 'system duty cycles' that are normally reserved for corporate-managed devices. 

This proves that the device is behaving as if it is enrolled in an MDM system.


PCS Tombstones 
Protected Cloud Storage (PCS) refers to secure cloud storage where data is encrypted 
and protected by strict access controls. "Tombstoned" refers to situations where certain 
data, such as keys or files, become inactive or inaccessible, often due to an error or 
security issue. However, these tombstones can be exploited maliciously. If an attacker 
gains access to the tombstoned data, they might "resurrect" these inactive keys or files, 
effectively bypassing security and re-enabling access to previously protected resources.


The logs show tombstone entries related to critical services such as iCloud, Photos, 
Maildrop, and Backup, which are essential for securing my data. These tombstones 
suggest that my device might be under the control of a rogue MDM (Mobile Device 
Management) profile, potentially allowing unauthorized actions like:


1. Data Exfiltration: A rogue MDM could be accessing and transferring my data to an 
external server.

2. Remote Commands: The rogue MDM might be sending remote commands to make 
changes, install malicious software, or disable security features.


Another alarming finding is related to secure onboarding being disabled. Without proper 
verification during setup, my device could have been compromised from the start. A 
rogue MDM could exploit this by pushing unauthorized configuration profiles that bypass 
security features like encryption and password protection.


Additionally, I noticed compromised data synchronization with tombstones related to PCS 
services like PCS-Notes, PCS-Maildrop, and PCS-iCloudDrive. This could indicate that 
the rogue MDM is preventing my device from securely syncing with trusted services, 
either to intercept my data or send it to unauthorized third parties.


Tombstones in services like Backup, Escrow, and Keychain suggest issues with 
encryption or the secure storage of sensitive data. A rogue MDM could be disrupting 
encryption, leaving my private information vulnerable, or blocking proper backups, 
potentially exposing my credentials or personal data.


34



The logs also show inconsistent device management, with the rogue MDM potentially 
disabling or bypassing security mechanisms such as keychain management or iCloud 
backups. This would increase the risk of data theft, unauthorized access, or other security 
breaches.


Conclusion 

1. MDM-like Activity: Strong evidence of rogue MDM-like behavior was found, 
indicating that a malicious configuration mimicking official Mobile Device 
Management (MDM) protocols has been installed. This rogue configuration likely 
allows external control of the device, possibly to steal sensitive data or manipulate 
settings without my knowledge.


2. Unauthorized HomeKit Pairings: There are signs that HomeKit devices in my 
environment are being compromised. These unauthorized pairings suggest that 
nearby devices(which could be any IoT device that is forced to mimic Homekit) may 
be actively scanning for new devices to infect, using the local network to expand 
their reach and compromise additional devices.


3. Scanning for New Devices: The unauthorized pairings and behaviors strongly 
suggest that the compromised devices may be scanning for new devices nearby. 
This could indicate an ongoing attempt to spread the infection across other 
connected devices in the vicinity, forming a wider network of compromised 
systems.


4. Exploitation of Auto Unlock: The Auto Unlock feature appears to be exploited, 
allowing for repeated, unauthorized access to my devices. This persistent access is 
enabling attackers to bypass security measures and maintain control without 
detection.


5. Compromised Certificate System: The certificate system, which is essential for 
secure communication and authentication, has been compromised. This raises the 
possibility that additional malicious processes may be running on the device, using 
the tombstones—remnants of deleted data—as a means to maintain undetected 
access or persistence.


The combination of rogue MDM activity, unauthorized HomeKit pairings, and possibly 
exploitation of security features like Auto Unlock points to a well-coordinated and 
ongoing attack. The compromised certificate system further suggests that other malicious 
activities may be occurring in the background. This investigation underscores serious 
concerns about the vulnerabilities in connected ecosystems, highlighting the need for 
stronger security measures to protect against such targeted exploits.


I/O Device Tree 

Next, I'll be examining the I/O Device Tree, which provides a detailed map of the hardware 
components and communication protocols on the device. This step is crucial because it 
can reveal any unauthorized modifications or hidden hardware components that could 
indicate malware interference, such as rootkits or spyware that alter the way the system 
interacts with its hardware.


35



 Errors Indicating Interference with Touch Input and Communication 

1. Touch Input Errors (BLOB Errors):

   - Errors like `touch.BLOB_FDTN.OLD_VERSION`, 
`touch.BLOB_MTCF.BAD_CHECKSUM`, and `touch.BLOB_FDTN.BAD_VERSION` suggest 
corrupted or incompatible data blobs used by the touchscreen.

   - These issues may be caused by rootkits or spyware tampering with the 
communication between the touchscreen and the main processor, potentially altering 
data or hiding touch inputs to enable remote control or malicious actions.


2. SPI Communication Errors (`HIDSPI_SLAVE`):

   - Errors such as `touch.HIDSPI_SLAVE.ERR_SENT`, 
`touch.HIDSPI_SLAVE.SPI_MODE_FAULT`, and `touch.HIDSPI_SLAVE.ACK_SENT` point 
to issues with the SPI protocol used for communication between the touchscreen 
controller and the CPU.

   - These may be indicative of malware interfering with touch data transmissions, 
potentially to disrupt normal touch input or to simulate touch events for remote control.


3. Critical Timing and Frame Errors:

   - Errors like `touch.critical-error.frame-sync-missing` and `touch.critical-error.step-sync-
missing` suggest timing synchronization issues that could be caused by malware 
intentionally delaying or corrupting frame data to mask touch events, thus preventing 
normal touch input recognition and facilitating covert manipulation.


Memory and Algorithm Errors 

1. Memory Allocation Failures:

   - Errors such as `touch.HOST_TRPT.MEM_ALLOC_FAILED` suggest memory allocation 
issues that could be deliberately caused by rootkits to prevent proper handling of touch 
data or to block system processes used for detection.


2. Dropped Debug Data:

   - The `touch.HOST_TRPT.SA_DEBUG_DATA_DROPPED` error indicates that debug logs 
are being suppressed, which is a common tactic used by malware to hide its actions and 
avoid detection by system monitoring tools.


3. Calibration and Algorithm Manipulation:

   - Errors like `touch.ALGS.BASELINE_CAPTURE_OVERRIDEN` and 
`touch.ALGS.BASELINE_VERIFY_FAILED` indicate tampering with baseline calibration 
algorithms, which malware could exploit to manipulate touch recognition, mask 
interactions, or simulate touch events for remote control.


Suspicious Network and System Configurations 

1. Covert Communication Channels:

   - Entries like `"personal-hotspot" = <01000000>` and `"wifi-chipset" = <"4387">` point 
to potential network manipulation, where spyware may be using the personal hotspot 
feature to covertly exfiltrate data or maintain an undetected communication channel with 
external servers controlled by the attacker.


36



2. Security and Virtualization Manipulation:

   - Settings such as `"has-exclaves" = <00000000>` and `"has-virtualization" = 
<01000000>` suggest that malware may be bypassing security features like exclaves (to 
reduce system protection) or using virtualization to run hidden processes that evade 
detection from traditional security tools.


Suspicious Device Log Entries: Key Indicators of Compromise 

1. Debugging and Root Access Indicators:

   - "debug-enabled": Active (`true`) – Debugging should be disabled in production 
environments. If active, it suggests unauthorized access, likely for data collection or 
manipulation by an attacker.

   - "consistent-debug-root": Active (`true`) – Indicates the device may be running with root 
access, which enables exploitation and installation of malicious software.


2. System and Security Configurations:

   - "use-recovery-securityd": Active (`true`) – The device is using recovery mode's security 
daemon, suggesting that an attacker may be manipulating recovery settings to bypass 
security controls and gain persistent access.

   - "amfi-only-platform-code": Active (`true`) – This bypasses Apple's security 
mechanisms, allowing non-approved or malicious code to run undetected.


3. Network and Device Identification Issues:

   - "mac-address-bluetooth0": Suspicious (Malformed or non-standard) – A malformed 
MAC address suggests MAC address spoofing, a tactic often used to avoid detection or 
conduct Man-in-the-Middle (MitM) attacks.

   - "bootp-response": Suspicious (Network boot response) – An unexpected network 
boot response could indicate the device is booting from a compromised server, which 
puts it at risk of malware installation or other attacks.


4. Integrity and Firmware Concerns:

   - "secure-boot-hashes": Suspicious (Mismatch with official hashes) – A mismatch in 
secure boot hashes signals that the firmware has been tampered with, potentially allowing 
attackers to control the boot process and run unauthorized code.

   - "chip-id" and "board-id": Suspicious (Altered or inconsistent) – Changes in hardware 
identifiers may indicate hardware tampering or an attempt to clone the device.


5. Security and Trust Cache Concerns:

   - Several critical entries in the logs show empty values, which could point to tampered 
or compromised security mechanisms:

     - TrustCache – Should contain critical security data; an empty value signals potential 
malfunction or tampering with system security.

     - SPTM-virt – Secure Platform Module entries should not be empty; absence here 
suggests manipulation of secure boot or platform integrity.

     - BootKC-rw – The Boot Key Cache should be initialized for secure OS loading. An 
empty value could indicate bypassed security checks.

     - DeviceTree – Should contain device configuration data; empty entries in the 
DeviceTree signal tampering with hardware initialization.


37



Conclusion 
The combination of touch input errors, system configuration anomalies, and suspicious 
device log entries strongly suggests that the device may be compromised. Malicious 
programs appear to be tampering with both low-level communication protocols (such as 
touch input and SPI communication) and critical system settings (such as debugging, root 
access, network communication, and device security).


- The presence of corrupted data blobs, calibration manipulation, and timing errors 
indicates that touch input may be deliberately altered or ignored to allow for remote 
manipulation.

- Additionally, suspicious system configurations, like enabled debugging, root access, 
and tampered firmware hashes, point to an attacker attempting to gain persistent control 
of the device while avoiding detection.

- Network-based espionage and location tracking settings further suggest that malware is 
actively gathering data, potentially for surveillance or data exfiltration.


Given the evidence of root access, tampered security components, and hidden network 
communications, the device could be the control of a rootkit or spyware, which is being 
used to manipulate the device, monitor user activity, and exfiltrate sensitive data.


FaceTime 
Even though FaceTime has never been enabled on this device, I'll be examining the log 
entries to investigate any residual configurations or unexpected activity. This analysis will 
help determine if there are any hidden traces of the service still running or if the system 
has been improperly modified.


Log entry:

+-o facetime <class IORegistryEntry:IOService, id 0x100000210, !registered, !matched, 
active, busy 0, retain 4>

    "encoding" = 
<400100000f00f000400100001e00f000e00100000f007001e00100001e007001800200001
e00e001000400001e000003000500001e00d002>

    "decoding" = 
<400100000f00f000400100001e00f000e00100000f007001e00100001e007001800200001
e00e001000400001e000003>

    "bitrate-3g" = <e4000000>

    "name" = <"facetime">

    "bitrate-lte" = <e4000000>

    "tnr-mode-front" = <0a000000>

    "bitrate-2g" = <64000000>

    "pref-decoding" = <000400001e000003>

    "tnr-mode-back" = <0a000000>

    "AAPL,phandle" = <0f010000>

    "bitrate-wifi" = <d0070000>


Key Observations:

- FaceTime Still Active: Despite FaceTime being disabled or removed from my device, the 
service remains active in the system logs. The presence of configuration settings related 
to network bitrate (`bitrate-wifi`, `bitrate-3g`, etc.) and camera noise reduction (`tnr-mode-
front`, `tnr-mode-back`) suggests that, under normal conditions, FaceTime is still set up to 
function as intended.


38



  

- Residual Settings: These lingering configurations point to the possibility that FaceTime 

wasn't fully removed and disabled from the system. This could be due to improper 
disabling or incomplete system modifications.


The continued presence of FaceTime-related entries in the log suggests a few 
possibilities:


- Incomplete System Modification: FaceTime was manually disabled and removed by me, 
but it seems like some parts of the service may have been missed. This could be a sign 
that certain elements of the app were not fully removed, either due to an oversight or 
improper removal methods.

  

- Potential Malware: Another concerning possibility is that the service is still running due 
to external tampering, such as malware trying to keep certain processes alive. If the 
system has been compromised, malware might be using this service or other residual 
processes to maintain unauthorized access.


The fact that FaceTime’s configurations persist in the system log—despite the service 
being disabled and even removed entirely from my device—raises the possibility of 
malicious activity.


8. Connected Threats: Siri, Proxies, and Device Cloning 
In this final chapter, I will tie together the findings surrounding Siri vulnerabilities, proxy 
tunneling, device cloning and HomeKit vulnerabilities. Evidence gathered from 
sysdiagnose data points to several interconnected attack vectors. Specifically, it suggests 
that Siri exploits—combined with proxy manipulation and vulnerabilities in legacy Me.com 
accounts—may allow attackers to clone iCloud accounts and gain full unauthorized 
control over your devices.


One key area of analysis is the remote-dumpstate file found in iOS sysdiagnose logs. The 
remote-dumpstate contains detailed system-level information, including network activity, 
device interactions, and error logs, which can reveal proxy-based attacks used to 
manipulate Bluetooth communication and impersonate legitimate devices. These proxies 
could facilitate hiding malicios activity by bypassing normal authentication and network 
processes.


Additionally, further evidence suggests that Siri's functionality may be compromised 
through Apple Shortcuts, a feature that allows users to automate tasks by creating 
custom actions triggered by voice commands. In some cases, I have found indications 
that Siri’s commands were rewritten to link with Apple Shortcuts in ways that bypassed 
standard security measures, potentially allowing attackers to hijack Siri’s voice 
interactions and control your device remotely.


Moreover, a significant finding relates to the use of legacy Me.com accounts in device 
cloning. Legacy Me.com accounts, once part of Apple's older iCloud system, appear to 
be exploitable more easily. By leveraging weaknesses in these older accounts, attackers 
can gain access to the associated iCloud data and impersonate the legitimate account 
holder, further enabling unauthorized control.


39



When Siri Turns Rogue 

The log I am looking at is MAAutoAsset_Filesystem_History_xx (appx.) and this offers key 
insights into the activity surrounding assets associated with Siri and related resources. 
Below is a breakdown of the events, with a focus on suspicious behaviors, the presence 
of trial assets(which could be related to developer mode), and implications for malicious 
use. I used AI to dissect and analyze these files into detail.

————

START GPT 

1. Multiple "Unknown" Assets:

◦ Entries such as STA_STARTUP_BEGINNING and 

STA_STARTUP_ACTIVATED (timestamped multiple times on 2024-10-31 and 
2024-11-01) are linked to assets marked as "UNKNOWN." This suggests that some 
assets being initialized do not have clear identifiers or are being disguised. This kind 
of obfuscation is often seen in cases of malicious activity or unauthorized 
modifications.


2. Frequent and Multiple Downloads of Siri Assets:

◦ A significant portion of the log revolves around the addition of Siri-related assets, 

particularly in the form of Siri Text-to-Speech (TTS) resources and linguistic data.

◦ These assets include versions for various languages, with frequent downloads for 

Dutch (nl_NL), English (en_US), and Hebrew (he_IL). In a typical configuration, users 
wouldn't need to download multiple TTS resources unless required by specific 
localized settings or experimental features. The repeated addition and removal of 
these resources could be a sign of tampering or abuse.


Suspicious Patterns 
• Trial Assets Involved:


◦ The logs show Trial.Siri.SiriTextToSpeech assets being downloaded repeatedly, 
specifically using the client com.apple.triald (Apple's trial daemon for Siri features). 
Notable entries include:

▪ en_US-en_US-generic (9:12:16)

▪ nl_NL-nl_NL-generic (9:12:18)

▪ he_IL.yasmin.neural.premium-he_IL-iPhone (20:26:53)

▪ he_IL-he_IL-generic (20:26:55)


◦ These are trial assets, which should only be present during legitimate trial periods 
or in specific testing environments. However, the log shows a pattern of adding and 
removing these trial assets—indicating that someone may be using these assets 
beyond their intended usage.


◦ Trial assets like the "generic" and "premium" voice packs for various languages 
suggest that there is an attempt to access Siri's advanced functionality (likely 
without proper authorization).


• Inconsistent Activity Across Multiple Time Periods: 
◦ The STA_STARTUP entries indicate a startup process occurring at various times, 

but notably, the UNKNOWN assets consistently appear. This points to something 
(or someone) constantly reinitializing the system, possibly in an effort to trigger 
unauthorized downloads or updates.


◦ Trial Assets are Downloaded at Different Times of the Day: The downloads span 
different periods, with a burst of activity around 9:12, 9:18, and later at 16:30, and 
20:26. This could indicate scheduled or automated malicious processes attempting 
to maximize the download of specific assets.


Key Malicious Indicators 
1. Abnormal Siri File Activity:


◦ The presence of multiple downloads of Siri TTS resources, especially with the 
inclusion of premium and trial voices, suggests that there could be an attempt to 
access features typically restricted or reserved for certain users (i.e., those with a 
legitimate Siri trial or specific device profiles).


40



◦ The repeated downloads of language files (e.g., Dutch, English, Hebrew) may also 
signal that the attacker is attempting to manipulate or harvest linguistic resources 
for custom purposes (possibly related to AI manipulation or spoofing).


2. Trial Asset Use and Elimination:

◦ The log shows that a trial asset (the en_US TTS resource) is downloaded at 

2024-10-31_09:12:16, but shortly after (2024-11-01_16:38:40), it is 
eliminated via the operation DEL_CLIENT_ELIMINATE. This could be 
indicative of attempts to utilize the trial resource and then remove traces, ensuring 
that it does not remain active or visible to legitimate system checks.


◦ Additionally, the presence of Hebrew TTS voice assets 
(he_IL.yasmin.neural.premium) suggests a geographical or linguistic targeting 
pattern, which may be part of an attempt to blend in or operate in a region-specific 
way, without triggering red flags in a broader monitoring system.


3. No Clear Reason for Frequent Downloads:

◦ Given that Siri is disabled across the platform, the volume and frequency of 

downloads related to Siri TTS and linguistic assets are abnormal. Regular users 
would not typically need to download these assets unless explicitly enabled or 
required by certain configurations.


◦ This implies that the system may be under control by an unauthorized actor 
attempting to access Siri-related functionality or resources for malicious purposes.


Potential Malicious Use Cases

1. Fake Certificate Handling:


◦ The combination of downloaded Siri resources with "trial" identifiers suggests the 
possibility of fake certificate usage or the exploitation of trial periods. Malicious 
actors could be attempting to exploit trial functionalities to enable Siri features for 
free, bypassing authentication or authorization processes.


2. Localization Manipulation:

◦ The targeting of different language assets, especially for Dutch, English, and 

Hebrew, could suggest an attempt to manipulate Siri's linguistic understanding for 
custom commands or to target specific user bases. This could lead to the creation 
of rogue versions of Siri, capable of understanding and responding to specific 
commands—potentially even using social engineering.


◦
3. Exploitation for Data Harvesting or Attacks:


◦ These assets could be used for malicious purposes like speech synthesis attacks 
(e.g., generating voice commands to trick or manipulate other Siri-enabled devices) 
or data harvesting (e.g., using linguistic data to enhance training sets for artificial 
intelligence systems).


◦ Malicious actors could be attempting to generate custom voices, bypassing the 
standard voice models, which could eventually lead to fake voice generation or 
voice spoofing attacks.


4. Bypassing Siri Disabling:

◦ Since Siri is explicitly disabled across the platform, the act of downloading and 

potentially enabling Siri components surreptitiously could allow the attacker to 
activate Siri functionality without detection. This could be a method to bypass 
system restrictions and regain full control over Siri.


ENDGPT 
——————


Conclusion 
The log analysis reveals suspicious activity surrounding trial assets and Siri-related 
linguistic resources, including their download, removal, and the consistent use of 
"unknown" assets. If a malicious actor is involved, it seems to be exploiting trial-based 
Siri features (particularly text-to-speech functionality) to gain access to premium services 
and linguistic resources, possibly for AI-driven attacks. The pattern of activity, involving 
downloading language-specific TTS assets and immediately eliminating them, indicates 
an attempt to circumvent detection and maintain unauthorized access to these resources, 
possibly to manipulate Siri or execute further malicious operations.


41



Siri’s Secret Agenda 

When cross-referenced with photo-analysis crash analytics (appx. IMG0099), the same 
"unknown" source appears to be linked to Siri-related processes, including downloading 
voice resources and linguistic data. These assets, which are typically associated with 
legitimate system updates or feature enablement, might actually be being triggered by 
malicious scripts or unauthorized applications running on the device. 

BackgroundShortcutRunner: The Automation Exploit 

At the heart of this exploit is BackgroundShortcutRunner, a system process designed to 
run shortcuts and automations in the background. Normally, this process is used by 
legitimate Siri workflows or user-configured automation tasks. However, an attacker can 
manipulate this component to execute harmful actions without the user’s knowledge. 
Since I had removed the Shortcuts app and all of it’s related settings, this process 
shouldn’t be running.


When a malicious actor gains access to the system, they could create shortcuts that 
invoke BackgroundShortcutRunner, triggering harmful scripts or unauthorized actions 
behind the scenes. For instance, a shortcut might download and execute malicious 
payloads, change system configurations, or even give the attacker control over the 
device. This could all happen without any obvious indication to the user.


SiriActionsd: The Power of Voice Commands 

SiriActionsd is the system daemon that manages Siri’s voice recognition and the 
execution of voice commands. It's a critical part of Siri’s functionality, interpreting 
commands and triggering the associated actions. In a normal scenario, Siri listens for 
user commands and executes them – whether it's sending messages, setting reminders, 
or controlling device settings. Again, Siri is disabled throughout every setting on my 
device.


However, SiriActionsd is active and seems to be exploited. An attacker could manipulate 
this daemon to run predefined scripts or commands based on certain triggers, bypassing 
normal security checks. For example, a malicious actor could use Siri to issue commands 
that execute harmful scripts or download unauthorized assets. Since these actions are 
initiated through voice, they are often overlooked or considered harmless by traditional 
security measures.


In this context, SiriActionsd becomes a gateway for executing actions that would 
normally require user interaction or authentication. If exploited, Siri could trigger 
BackgroundShortcutRunner to execute these malicious tasks in parallel.


Swift Concurrency: A Silent Facilitator 

Behind the scenes, Swift Concurrency provides the framework for running tasks 
concurrently on iOS/macOS. This allows multiple operations to execute in parallel, 
making it efficient for handling things like voice processing, data syncing, or running 
automation tasks. While Swift Concurrency is primarily a tool to enhance performance, it 
can be weaponized by attackers.


42



By leveraging Swift Concurrency, attackers can run multiple tasks at the same time — 
often in a way that isn’t easily detectable by the user or security software. This parallel 
processing can make it extremely difficult to pinpoint exactly what the attacker is doing, 
as malicious tasks run in the background, seemingly in sync with legitimate operations.


Putting It All Together: A Potential Malicious Orchestration 

In this attack scenario, the "unknown" source triggers SiriActionsd to initiate a malicious 
Siri command. This command could involve downloading additional assets or executing 
harmful scripts — all while the device continues running seemingly normal operations. 
The BackgroundShortcutRunner may then be used to execute the harmful automation or 
workflow in the background, such as downloading malicious files or making unauthorized 
system changes.


The use of Swift Concurrency ensures that these tasks are executed in parallel, efficiently 
and without raising alarms. By running multiple operations concurrently, the attacker can 
accomplish a range of objectives, from exfiltrating data to installing more sophisticated 
malware, all while avoiding detection by traditional security tools.


Since these operations are initiated via Siri, they might not trigger the usual security alerts 
or user notifications. The combination of voice-activated commands, background 
automation, and concurrent task execution makes this type of attack particularly hard to 
spot.


Conclusion 

What we could be witnessing is a multi-layered exploit that manipulates several key 
components of the Apple ecosystem — BackgroundShortcutRunner, SiriActionsd, and 
Swift Concurrency — to execute harmful actions. By leveraging Siri and the automation 
framework in the background, attackers can silently carry out malicious tasks, ranging 
from unauthorized downloads to running scripts or taking control of the system.


This potential exploit works by abusing legitimate features and processes that are part of 
the system, such as Siri, background shortcuts, and automation tasks. The "unknown" 
source is likely a marker of the attacker's initial entry point, and their ability to use Siri and 
automation tools to execute harmful actions without detection is a clear sign of a highly 
sophisticated attack.


In essence, this represents a new class of attack where system processes that are 
typically trusted — like Siri and background automation — are turned against the user. If 
true, this exploit is insidious because it makes use of legitimate, built-in functionalities in a 
way that remains undetected, providing attackers with the ability to execute malicious 
commands and tasks without user interaction.


The hunt for hidden proxies 

When looking for signs of remote interference or unauthorized access, proxies or other 
network-based intrusion methods may leave traces in the remotectl_dumpstate log. 
Proxies can route traffic through external servers, potentially masking the true origin of 
requests or enabling remote control over the device without the user's knowledge. 


43



By analyzing DumpState logs, we can identify unusual network behaviors, unfamiliar IP 
addresses, or irregular communication patterns that might suggest the presence of 
remote control software, proxies, or other forms of covert interference (appx.)


The following services found in the log are non-default or suspicious in the context of a 
consumer device that shouldn’t have any hidden management or remote access. These 
services could indicate either a secret MDM presence, unauthorized remote control, or 
proxy tunneling.


1. com.apple.internal.devicecompute.CoreDeviceProxy.shim.remote

• This service is non-standard and could allow remote manipulation of internal device 

functions. If a remote party gains access to this, they could have deep access to 
the device, including running unauthorized processes. This could suggest hidden 
MDM-like control or a backdoor installed without the consumer’s knowledge.


2. com.apple.mobile.lockdown.remote.untrusted

• A remote untrusted version of the lockdown service could be an indicator that a 

remote actor or untrusted entity is attempting to access the device without proper 
authorization. If this service is enabled, it may be part of an undetected MDM or a 
covert backdoor. A consumer device shouldn’t have this active unless it’s a sign of 
remote interference or management by a hidden system.


3. com.apple.mobile.insecure_notification_proxy.shim.remote

• This service might be transmitting notification data over unsecured channels. If 

enabled remotely, this could be used to monitor or control notifications in a way 
that allows a third party to intercept or trigger actions. This could be part of a 
hidden management system or a way to bypass security for malicious purposes.


4. com.apple.internal.dt.coredevice.untrusted.tunnelservice

• This service appears to enable a "tunnel" to an untrusted external source, which 

could allow for remote control or data exfiltration. This type of service is common in 
MDM solutions or remote debugging tools used by developers, but should not be 
active on a consumer device without explicit authorization. If this is active, it may 
indicate proxy tunneling, potentially facilitating hidden management or 
unauthorized access.


5. com.apple.remote.installcoordination_proxy

• This service helps manage the installation of software remotely, and if active 

without the user’s knowledge, it could be a sign of a hidden MDM profile or remote 
control system that is managing installations, updates, or configurations on the 
device without consent.


6. com.apple.mobile.storage_mounter_proxy.bridge

• This service is not typically seen on consumer devices unless they are involved in 

file sharing or external device management. The presence of this service suggests 
the device may be facilitating external access to its file system via a proxy or 
bridge, potentially allowing remote mounting of storage. This could be used for 
unauthorized remote data access or manipulation, which is highly suspicious, 
particularly if the device is not under Mobile Device Management (MDM) or any 
remote administration system. The service could indicate hidden remote control or 
file exfiltration tools operating without the user’s knowledge or consent.


44



7. com.apple.PurpleReverseProxy.Conn.shim.remote

• This service is related to the Purple Reverse Proxy, which can reroute device 

communications through external servers. This may be used for traffic interception, 
enabling remote actors to mask the origin of requests and monitor or control the 
device’s behavior. If it is present, it could signify that the device is being controlled 
remotely, or its network traffic is being intercepted and manipulated by an external 
actor.


8. com.apple.accessibility.axAuditDaemon.remoteserver.shim.remote

• This service is related to accessibility features and could be used for auditing or 

tracking user interactions. If active remotely, it may allow an external actor to 
monitor or manipulate accessibility settings on the device, potentially exploiting 
these functions for unauthorized control or surveillance. Given that I've observed 
accessibility-related exploits in person, this service's presence strongly suggests 
that the device could be compromised and monitored through these features.


9.  com.apple.bluetooth.BTPacketLogger.shim.remote

• The Bluetooth Packet Logger is typically used for debugging Bluetooth-related 

issues. If remotely active, it could allow an external party to intercept Bluetooth 
communications or track connected devices. Given its remote nature, this could be 
exploited to access sensitive data from Bluetooth connections, making it 
suspicious if not actively used for debugging by the user.


10.  com.apple.mobilesync.shim.remote

• This service could enable unauthorized data synchronization, allowing an attacker 

to access or exfiltrate personal data. Given that it is used for syncing and data 
transfer, it should not be running remotely without clear authorization. Its presence 
remotely could indicate unauthorized access or control over the device's data 
synchronization.


11.  com.apple.mobile.MCInstall.shim.remote

• This service should not be running remotely on a consumer device. If active, it 

could indicate the remote installation of configuration profiles, potentially for 
surveillance, remote management, or exploitation. This could be a key indicator of 
a hidden MDM system or malicious software attempting to manage the device 
without the user’s consent.


12.  com.apple.RestoreRemoteServices.restoreserviced

• While legitimate in recovery contexts, if active remotely, it could allow an external 

party to restore services or change device configurations, potentially re-enabling 
previously disabled systems. If this service is remotely triggered without user 
consent, it could indicate that unauthorized actors are attempting to regain control 
or modify device settings, which is suspicious.


13.   com.apple.pcapd.shim.remote

• While legitimate in development or diagnostic contexts, if active remotely, it could 

suggest that an external party is remotely capturing network data or performing 
network diagnostics on the device. This process might be used by authorized tools 
for troubleshooting or debugging network-related issues.


45



Conclusion 
The analysis of above services strongly indicates the presence of remote access, 
tunneling, and covert management mechanisms, which align with the behaviors typically 
associated with MDM systems, backdoors, or exploits. Several services, point to the 
possibility of unauthorized manipulation of device functions and remote tunneling, which 
could be used for data exfiltration, surveillance, or remote control.


Key indicators of remote access and covert control signals unauthorized lockdown 
attempts, and suggesting rerouted communications and traffic interception. These 
services could provide an external party with the ability to monitor or manipulate the 
device remotely, without user awareness or consent, and with capabilities similar to a 
hidden MDM system. The presence of multiple found services further supports the notion 
that sensitive data—such as Bluetooth communications and synchronization data—may 
be intercepted or exfiltrated without the user’s knowledge. This log also suggests that 
unauthorized access to the device’s file system or locked data could occur remotely, 
posing a significant risk to privacy.


Furthermore, services related to accessibility align with my real-world observations, where 
accessibility features are hijacked to control the device or track user interactions 
surreptitiously. Other processes hint at unauthorized attempts to restore system 
configurations or regain control over the device, often bypassing security measures. In 
sum, the collective evidence of remote services, unauthorized synchronization, and MDM-
like behavior strongly suggests that the device has been compromised, likely through a 
hidden or illicit management system.


Skywalk and the HomeKit Breach 

One of the most concerning and often overlooked aspects of HomeKit’s inner workings is 
its reliance on the Skywalk Interface. Skywalk, an internal communication framework 
used by Apple, facilitates interactions between iOS and external devices. It plays a critical 
role in HomeKit’s secure communication between devices and the Home app, allowing for 
seamless control of smart home devices.


However, it is within this interface that the potential for exploitation exists. I have 
observed suspicious log entries that suggest the Skywalk Interface may be leveraged for 
device manipulation. These logs point to a service tied to HomeKit that may have been 
compromised or exploited, allowing malicious actors to bypass the security layers 
intended to safeguard the home automation ecosystem.


In the following analysis, I will present these log entries and break down the specific 
vulnerabilities tied to Skywalk. Through this examination, we will uncover how an attacker 
could potentially use this internal framework to manipulate HomeKit and create a 
backdoor into the home automation system—without the user’s knowledge. This is a 
critical issue that highlights the vulnerabilities lurking within Apple's ecosystem, exposing 
the fragility of what many consider a "secure" home.


46



The Saga continues 

The discovery of suspicious Skywalk services—specifically suggests a serious security 
vulnerability within Apple's HomeKit ecosystem, tied to the Skywalk Interface and IPSec 
communications (appx. IMG_0060 / 0062). The _tx suffix indicates these services are 
involved in the transmission of data between devices, which is highly concerning. If these 
services are being used to manipulate HomeKit accessories, such as smart locks, 
attackers could potentially intercept, modify, or inject malicious commands into the data 
streams. This manipulation could allow for unauthorized control of smart home devices, 
making it possible for attackers to bypass security layers designed to protect the home 
automation system.


The key issue here lies in how IPSec, typically used to secure data transmission, could be 
bypassed or compromised. The presence of these IPSec services, particularly with the 
_tx suffix, implies that data packets related to HomeKit devices are not only being 
received but also actively transmitted over potentially manipulated or insecure channels. 
This could be exploited to inject false information into the communication network, 
potentially triggering devices to respond to malicious commands, or turning IoT devices 
into a mimicked HomeKit device, as seems to be the case in my situation.


Together, these findings suggest that IPSec vulnerabilities within the Skywalk Interface are 
being leveraged to turn seemingly secure HomeKit devices into exploitable targets. The 
presence of these services in my device logs, especially in the context of devices I have 
observed linked to my Apple devices, points to a deliberate manipulation of 
communication channels. The remote exploitation of HomeKit accessories becomes not 
just a theoretical risk but a very real concern—indicating that attackers could be 
exploiting these vulnerabilities to gain covert access to your home automation system, all 
without your knowledge.


This paints a clear picture: the Skywalk Interface, rather than simply securing HomeKit 
devices, may be a backdoor for attackers and in turn, makes sure this malicious code will 
always be watching, waiting to attack a fresh new device entering my home area.


Me.com: Apple's Forgotten Weakness 

I will now delve into the security concerns surrounding Apple’s iCloud, a cornerstone of 
the company’s ecosystem. My interest in iCloud was piqued since I created a brand-new 
Apple account, expecting a fresh start with no ties to previous data or devices. However, 
despite disabling all features except for Mail during the initial setup, I noticed persistent 
anomalies. 


Upon further investigation through Apple’s built-in privacy logging feature(which 
showcases the connected networks to different apps and services), I found that the Mail 
app, the only active iCloud feature, was primarily connecting to legacy me.com 
servers(appx.)—a strange occurrence considering me.com was phased out a decade ago 
and was associated with older Apple services. This raised immediate red flags, as it 
suggested that a brand-new account was inexplicably relying on outdated, potentially 
vulnerable infrastructure. 


47



Intrigued, I decided to investigate further by downloading my privacy data from 
privacy.apple.com to search for any unusual activity. What I uncovered was rock-solid 
evidence supporting my earlier concerns: a strong indication that device cloning—an 
attack method I had suspected—was indeed occurring, enabling unauthorized access 
and manipulation of my devices. This discovery set the stage for a deeper exploration into 
Apple’s iCloud infrastructure, revealing significant security flaws that could leave users’ 
personal data exposed and vulnerable to exploitation.


Looking more closely at this specific part of the iCloud log (appx.), there are a few 
noteworthy points regarding the OS entries, the event timestamp, and my account's 
creation process. Let's break it down and analyze if this is typical or if it raises any red 
flags:


Two Entries for the Same Analytics User ID 
Analytics User ID: The unique user ID appears twice under the iCloud Mail Account 
Creation Information section. The two entries are identical in most aspects, with the same 
timestamp (2024-11-14 21:00:00) and similar details, but with a different OS Name:


OS Name: OTHERS (First entry)

OS Name: iOS (Second entry)


This is unusual because the iCloud account creation event should only trigger one entry 
for the user. Typically, you would expect one log entry showing the OS type and details, 
not multiple entries. The system might be logging these separately for different platforms, 
but having two entries for the same creation event (with different OS details) raises the 
possibility of some anomalous behavior or an error in logging.


Is this just a system logging glitch or an issue with the way events are recorded?

Or does it indicate that two different devices or platforms were involved in the iCloud 
account creation at the same time? Evidence suggests the account has been set up on 
an iOS device but then authenticated or synchronized on another device (labeled as 
"OTHERS"). This would confirm my hypothesis and earlier shown evidence on device 
cloning and the infection already taking place during the initial device setup phase.


I have not used multiple devices or platforms to set up this iCloud, remember I took 
extreme precautionary measures while setting up this new iPhone, trying to isolate it as 
much as possible. With this in mind, it is highly likely that another device or VM has been 
used to set up or authenticate the account without my knowledge.


Timestamp and Event Duplication 
Both entries have the same timestamp (2024-11-14 21:00:00), which is quite unusual. If 
the events are indeed tied to the same account creation action, they should ideally be 
logged only once, with all the details combined. The duplication of the log entries at the 
same timestamp suggests that either the system has a logging bug, or as I suspect, there 
have been multiple access or authentication attempts from different sources that caused 
this duplication.


48



Operating System Information 
The first log entry uses OTHERS as the OS name, which generally refers to devices that 
are not iOS or macOS. It could be a non-Apple device (such as a third-party device) that 
interacted with the account. This is particularly noteworthy since it’s paired with iOS 18.1 
in the second entry.


The OTHERS OS label is rare for Apple devices, but it could also refer to certain apps, 
web interfaces, or third-party services that accessed the iCloud account. This is 
suspicious since I have not interacted with the iCloud account on a non-Apple device nor 
used any third part service. It could indicate an attempt to access the account via a non-
Apple platform, such as a proxy, app, or third-party service that is not typically associated 
with iCloud or Apple.


Authentication Count 
The Authentication Count is logged as 11, which indicates that the account has been 
authenticated multiple times. While this is not necessarily suspicious, if there are 11 
authenticating events in a short time, it may suggest that the account is being accessed 
from multiple locations or platforms.


Conclusions 
Based on these highly suspicious findings, like the duplication of OS Name entries, 
timestamp duplication, unusually high authentication count and the notion of OTHERS as 
an OS type, indicates a high probability of unauthorized access: an attempt to set up and 
authenticate my iCloud account via a non-Apple device or service. This opens the 
possibility for the OTHERS source in cloning my iCloud account and use it in conjunction 
to my own.


Attack of the clones 

Let’s investigate further, to validate my suspiciouns. The next iCloud account data I 
downloaded(appx.), raised several concerns regarding the integrity and security of my 
account, again indicating unauthorized access, device cloning, or attempts at account 
manipulation.


Multiple Account Creation and Update Events 
The logs show multiple instances of "New iCloud Account"and "Upgrade to Full iCloud 
Account" events occurring at the exact same timestamp, 2024-11-14 at 08:00:00. 


This repetition is unusual for a typical account setup and suggests potential tampering or 
unauthorized reconfiguration. Normally, an iCloud account is created once and only 
updated later, not in multiple instances on the same date and time.


Device Information and Consistency 
The logs consistently identify the device model as iPhone 13 (iPhone14,5) across all 
events. This consistency could suggest that a single device is involved, but the multiple 
creation and update attempts raise suspicions that the account may have been accessed 
or manipulated by another device. Additionally, the presence of "iPhone 13" across 
different events, despite no evidence of multiple devices, may indicate attempts to clone 
the account onto other devices.


49



Alias and Account Modifications 
The presence of an "unknown_na" alias and missing values for other aliases raises 
concerns about potential obfuscation or manipulation of account identifiers. This could be 
an attempt to cloak unauthorized changes or hide the true nature of the account activity.


Repeated Use of the Same Analytics User ID 
The consistent appearance of the same Analytics User ID across all events is typical, but 
the unusual frequency of "New iCloud Account" events associated with the same ID 
suggests either device duplication or an attacker attempting to manipulate my account 
across multiple sessions or devices.


Conclusion 
The analysis of these iCloud account logs suggests several indicators of a compromise, 
including suspicious account creation patterns, multiple device involvement, and possible 
use of anonymizing techniques such as proxies or tunneling. Especially the repeated 
account creation and updates, points to the possibility of unauthorized attempts to 
manipulate or clone the account. These behaviors deviate from typical, legitimate user 
activity and further legitimizes my claims.


The Dark Side of iCloud Security 

Based on these next extensive logs and data(appx.), a thorough analysis indicates that 
multiple security concerns exist within my iCloud account, again involving device cloning, 
legacy account configurations, and suspicious syncing activities. 


These issues point to the likelihood of unauthorized access, potential malware 
compromise, and anomalous device behaviors, all of which suggest that a malicious actor 
may be attempting to exploit or manipulate my iCloud account. This analysis will explore 
these concerns, linking the device syncing anomalies, legacy iCloud setups, and 
suspicious log entries to the potential actions of a malicious actor.


Indicators of Device Cloning and Unauthorized Access 
One of the most prominent signs of malicious activity in the provided logs is the presence 
of multiple devices being added to the iCloud account under the same or similar UDID 
identifiers. The repeated addition of devices, suggests that a cloned device may be 
interacting with my iCloud account. Such behavior is non-typical for legitimate users, who 
generally do not have multiple devices with the same identifiers accessing the same 
account simultaneously.


Furthermore, the suspicious syncing of encrypted data while these settings are turned off 
(such as logs related to ProtectedCloudStorage, e.g., com.apple.ProtectedCloudStorage-
com.apple.siri.data) indicates that sensitive information, including user credentials, 
passwords, and encrypted data, may be vulnerable to unauthorized access. If these 
devices are indeed clones, it is possible that they are accessing the keychain or iCloud 
backups, which would allow an attacker to exfiltrate or manipulate sensitive data without 
the user's knowledge. The issue is further exacerbated by the device identifiers being 
repeatedly added, which points to an ongoing attempt to gain unauthorized access to the 
iCloud account, potentially via cloned or fraudulent devices. This is a strong indicator of 
malicious activity and is typical of device cloning attacks, where attackers aim to replicate 
a device's identity to bypass two-factor authentication and gain access to the account's 
services.


50



Legacy iCloud Account Configuration 

The logs indicate that the iCloud account may be tied to older server configurations (such 
as syncing with me.com servers), which suggests that the account may reflect a legacy 
iCloud account. Legacy accounts, typically created under Apple's previous email systems 
(such as me.com or mac.com), often retain configurations that are no longer supported by 
Apple's updated security infrastructure. This creates a security vulnerability, as older 
protocols tend to lack the modern encryption standards and advanced security features 
that newer iCloud accounts benefit from.


The use of legacy server domains such as me.com is concerning because it may indicate 
that the account is not fully updated or is still using outdated security protocols. This is 
typical of accounts that have not migrated to Apple's latest iCloud systems, which 
include enhanced security measures like AES-256 encryption and end-to-end encryption 
for backups. As a result, data linked to legacy accounts is more susceptible to 
exploitation or interception. This is highly unusual for an account created in 2024.


Furthermore, syncing with legacy servers may also signal that the iCloud account is 
missing newer security features such as two-factor authentication (2FA), advanced app-
specific passwords, and modern device management tools. These are critical in 
defending against unauthorized access, especially if a malicious actor is attempting to 
exploit weaknesses in the legacy system to gain access to the account.


Suspicious Syncing Patterns and Potential Malware Involvement 
The logs show suspicious syncing activity, particularly related to ProtectedCloudStorage 
services, which could point to unauthorized access from a compromised device or 
application. Entries indicating fetching SOS circle status errors further suggest issues with 
device authentication or key management within the iCloud system, which may be 
caused by unauthorized devices attempting to interact with the account.


Additionally, the entry labeled “Fetching SOS circle status errored” hints at a potential 
failure in device authentication processes, suggesting that the malicious actor is trying to 
gain unauthorized access to the account by using techniques that bypass or disrupt the 
normal authentication process. The use of non-Apple devices or third-party applications 
acting as proxies or relays is another concern, as this could be an attempt to disguise the 
true source of access, potentially to obscure the malicious activities from detection.


The presence of multiple device identifiers, along with unusual OS type entries (notably 
the appearance of "OTHERS" as an OS type), points to the possibility that a third-party 
proxy, malware, or external application is being used to relay data through the iCloud 
account. Such behavior is typically associated with malicious actors trying to mask their 
true identity or location, making it difficult for security measures to detect unauthorized 
access.


Furthermore, the attempt to sync encrypted data through unusual channels, such as Siri 
or Accessibility options, could indicate the malicious actor's attempt to gain deeper 
access to cloud-based services (e.g., encrypted communications, private documents). 
These channels may have been exploited by the attacker to gain control over a device or 
to monitor or intercept sensitive data without the user’s consent.


51

http://me.com


Implications of Multiple Device Involvement and Proxy Usage 

The logs exhibit repeated entries of devices being added to the account, often with 
identical or similar identifiers, which suggests a scenario where multiple devices are being 
used simultaneously to access the account. This type of activity is often indicative of 
cloning or hacking attempts, where an attacker uses several devices to gain access to an 
account in order to either maintain persistent access or mask their activities.


The presence of multiple device identifiers across different logs implies that these devices 
are likely being used to disguise the source of access or to establish a more persistent 
foothold in the account. Such behavior deviates significantly from legitimate user activity, 
where devices typically follow a set pattern of syncing and connection. The involvement 
of non-standard OS types and proxy-like behavior further suggests that the attacker is 
using third-party applications or anonymizing proxies to hide their true intentions, further 
complicating the detection and mitigation efforts.


This type of proxy or relay activity is consistent with malicious actors attempting to cover 
their tracks and obfuscate the source of their actions. By routing data through multiple 
devices or proxies, the attacker can evade detection by security systems that rely on 
recognizing the legitimate devices and IP addresses used for accessing the account.


The iCloud Threat: Now Laid Bare 

The analysis of all iCloud account logs presents several clear indicators of a likely 
malicious actor attempting to compromise my iCloud account. The cloning of devices, 
legacy account configuration, and suspicious syncing behavior all point to a deliberate 
and sophisticated attempt to exploit vulnerabilities within the iCloud system. 


Specifically, the combination of repeated device additions, syncing to legacy servers, and 
the use of proxies or non-standard OS types indicates that the attacker is using advanced 
tactics to obscure their presence and gain unauthorized access. The presence of multiple 
devices being added to the account, along with the fetching SOS circle status errors and 
unusual syncing patterns, suggests that the malicious actor is actively interacting with the 
account, likely to manipulate data or exfiltrate sensitive information. 


This behavior, coupled with the exploitation of legacy account configurations, indicates a 
possible breach of security and showcases that the used attack vector has moved 
beyond the physical device.


In light of these findings, my account shows clear signs of unauthorized access, likely 
facilitated by a malicious actor employing cloning techniques, proxies, and compromised 
devices to manipulate the iCloud account. The potential for further compromise and the 
risk to sensitive data are significant, requiring immediate attention and action to prevent 
further exploitation of the account.


52



9. Supplementary Findings 

Developer Mode & Ckey(appx. IMG_0091) 
Normally, Apple devices do not display keys like Ckey unless the device is in developer 
mode or has been provisioned with specific developer tools. When in developer mode, 
Apple allows developers to sign apps and create profiles, and to use debugging tools 
such as Xcode. These tools typically use certificates and keys (like Ckey) to sign apps 
and establish a secure connection between the developer's machine and the device.


Unstructured Supplementary Service Data(appx.)

When you dial *#21# on a mobile phone, it typically triggers a USSD (Unstructured 
Supplementary Service Data) code that displays the status of call forwarding services on 
the device. Specifically, this code reveals whether incoming calls, SMS, or data are being 
forwarded to another number or remote service. The errors or inconsistencies displayed 
when dialing *#21# could point to tampering or remote manipulation of the device's 
communication settings, potentially by malware or malicious software. These 
discrepancies suggest that the device may be under remote control, with call forwarding 
or other communication features being altered without the user’s consent.


Bifrost(appx. IMG_0115)

Bifrost is a tool often used by Apple internally to manage communications and other 
system-level services, including debugging or manipulating system states and performing 
operations at a low level. The presence of Bifrost-related services or processes on a 
consumer device could indicate the device operating in Developer Mode: If your device is 
in developer mode, it is possible that tools like Bifrost are enabled to facilitate debugging, 
installation of custom apps, and other development-related activities.


mach_msg(appx. IMG_0086) 

This is a function in Apple's Mach kernel, used for receiving messages between 
processes in the operating system. It is part of the Inter-process Communication (IPC) 
system in macOS and iOS, allowing different processes to send and receive data. An 
attacker could exploit mach_msg_receive by manipulating message buffers or using it to 
intercept or redirect IPC messages. This could lead to privilege escalation, information 
leakage, or even remote code execution. Vulnerabilities in this system could allow 
malicious processes to inject malicious code, gain unauthorized access to other 
processes' data, or gain elevated privileges on the device.


FORCEDENTRY(appx.) 

This is a high-profile kernel exploit discovered by Google's Project Zero and first publicly 
disclosed in 2021. It was primarily used by NSO Group, an Israeli spyware firm, in their 
Pegasus surveillance tool to conduct zero-click attacks on iOS, macOS, and watchOS 
devices. This exploit allowed attackers to gain root access to Apple devices without 
requiring any user interaction, making it especially dangerous for high-profile targets. 
Apple patched the vulnerability in iOS 14.8 and macOS 11.6 with critical security updates 
in September 2021, closing this specific attack vector.


In addition to FORCEDENTRY, other exploits like JSGreeter44 and Caliber44 have been 
linked to similar short-range attacks, taking advantage of different weaknesses in Apple’s 
security framework. 


53



These exploits target Bluetooth and local network vulnerabilities, enabling attackers to 
remotely execute commands on nearby devices with minimal proximity—sometimes 
requiring only the victim’s device to be within Bluetooth or Wi-Fi range.


JSGreeter44, in particular, is a short-range exploit that abuses flaws in Bluetooth stack 
implementations, allowing attackers to intercept or inject malicious data into the 
communication between devices. This can facilitate unauthorized access to sensitive 
data. Meanwhile, Caliber44 is a more advanced tool used to manipulate device security 
by taking advantage of system weaknesses, including flaws in device synchronization and 
device management protocols. It’s typically used in conjunction with FORCEDENTRY to 
escalate privileges, establish persistent malware, or hijack iCloud-related services.


These short-range exploits, though not as widely discussed as FOREDENTRY, contribute 
to a broader pattern of attack vectors that Apple devices are vulnerable to, especially 
when legacy systems like me.com are still active or certain outdated protocols are left 
unpatched. While FORCEDENTRY has been patched, the presence of such short-range 
exploits like JSGreeter44 and Caliber44 underscores ongoing risks in Apple's ecosystem
—particularly in scenarios where attackers exploit proximity-based weaknesses to take 
control of devices. 


Apple Intelligence (appx.) 
I have added additional screenshots from my iPhone 13 that further support my earlier 
findings regarding the exploitation of Siri as an attack vector. To mitigate any potential 
threats, I took the precaution of deleting all essential apps after initial setup, including 
Reminders, Tips, Shortcuts, and News. I also disabled all Siri-related functionality across 
the system, including Siri suggestions, voice activation, and other related services.


However, after performing a reset of Siri’s hidden suggestions, I observed an unusual and 
concerning behavior: deleted apps—specifically those I had removed—were still 
displayed in the search bar as being recently used by Siri, even though they no longer 
appeared in the user interface (UI). Notably, the News app could not be deleted and 
remained visible in the system, though it could not be opened. This anomaly strongly 
indicates that Siri, despite being disabled, may still retain hidden links to certain apps and 
services that were supposedly removed or restricted.


These findings further substantiate the earlier evidence I shared, which suggests that Siri
—and potentially Apple Intelligence—could be leveraged as a vulnerable attack vector, 
potentially exposing users to persistent privacy risks. The fact that deleted or inaccessible 
apps are still referenced and interact with Siri's backend systems points to a deeper, 
systemic issue in how Siri handles user data and system processes. 


This raises significant concerns about the security and integrity of Siri’s functionality, 
particularly in the context of unauthorized control and data leakage. Such vulnerabilities 
could be exploited in the future leveraging Apple Intelligence, making Siri and similar 
systems unsafe for users, even when they believe they have taken the necessary steps to 
disable or remove them.


PSFFLASHER (appx.)

I discovered a file named ‘psfflasher.efi’ located in a hidden folder on my MacBook. This 
file was not installed by me, and its origin is unclear. Upon further investigation, it became 
evident that the file is associated with the process of flashing firmware on PlayStation 
devices, which I have two of in my home. 


54



One of these PlayStations is connected directly to my router via a LAN cable. Based on 
the nature of this file and my findings, it is plausible that a malicious actor may have used 
‘psfflasher.efi’ to flash the firmware of one or both of my PlayStation consoles. 


Flashing firmware refers to the process of installing or updating the low-level software 
(firmware) that controls the hardware of a device. This is typically done to update the 
device's functionality or fix bugs. However, flashing can also be used maliciously to 
modify a device’s capabilities, potentially enabling unauthorized access or altering its 
behavior in harmful ways.


The modified firmware on the PlayStation consoles could serve multiple malicious 
purposes:


1. Mimicking a HomeKit Device: Apple’s HomeKit is a framework that allows devices to 
integrate with a home automation system. By flashing the PlayStation's firmware, an 
attacker could potentially alter the device to appear as a legitimate HomeKit accessory. 

This would allow the attacker to manipulate or spy on other devices in the home 
automation network without the homeowner's knowledge.


2. Wi-Fi Spoofing: Wi-Fi spoofing occurs when an attacker creates a fake Wi-Fi network 
that mimics a legitimate one, often to lure unsuspecting devices into connecting. If the 
PlayStation’s firmware were altered to spoof a Wi-Fi access point, it could trick other 
devices in the vicinity—such as smartphones, laptops, or IoT devices—into connecting to 
the fake network. Once connected, the attacker could intercept sensitive data, conduct 
man-in-the-middle attacks, or further compromise the connected devices.


3. Exploiting Bluetooth: PlayStation consoles are equipped with powerful Bluetooth 
modules. By modifying the firmware, the attacker could leverage this Bluetooth 
functionality to exploit short-range vulnerabilities in nearby devices. Bluetooth exploits 
can include unauthorized access to devices, data theft, or manipulation of connected 
peripherals. These types of attacks typically involve sending specially crafted signals to 
nearby Bluetooth devices in order to bypass security mechanisms and gain unauthorized 
control.


Given the PlayStation’s connection to my router and the potential to exploit Wi-Fi and 
Bluetooth technologies, the compromise of either or both of these devices could have 
serious implications for the security of my home network. If the firmware was indeed 
altered by leveraging my MacBook, to include these malicious features, the attacker 
could gain access to personal data, disrupt the functionality of other devices in my home, 
or use my network for malicious activities without my knowledge. The proximity of one of 
the PlayStations to the router could also enable remote access to the compromised 
device, making it more difficult to detect or prevent such intrusions.


The discovery of ‘psfflasher.efi’ on my compromised MacBook, combined with the 
potential for firmware modification of my PlayStation consoles, suggests a serious 
security concern. It is possible that a malicious actor used this file to exploit my devices 
and potentially compromise the integrity of my home network, posing risks to both my 
privacy and the functionality of my connected devices. This aligns precisely with the 
findings in the security logs, which suggest that devices within my home network have 
been compromised. These devices could potentially serve as a gateway for an attacker to 
target and exploit a new Apple device during its initial activation and setup process.


55



Analysis of the Ghostery Privacy Browser App(appx.)


This part examines evidence suggesting that the Ghostery Privacy Browser installed on 
my compromised device has been altered or is running in a beta state outside the official 
Apple App Store distribution process. The analysis draws from several indicators within 
the app's configuration files and behavior, raising concerns about potential unauthorized 
modifications.


The presence of the key `@cliqzprefs:developer` set to `"true"` is a critical indicator. This 
flag is commonly used in development environments to enable debugging and 
troubleshooting features, including extended logging and testing capabilities. In 
production apps, especially those distributed through official channels like the App Store, 
such flags should typically be disabled. The presence of this flag suggests that the app is 
either in beta or has been tampered with to enable developer features. This is atypical for 
a publicly available app and raises concerns about its integrity.


The app's configuration contains multiple debug-level logging settings, such as:

- `@cliqzprefs:logger.human-web-lite.level: "debug"`

- `@cliqzprefs:logger.telemetry.level: "log"`

- `@cliqzprefs:logger.insights.level: "debug"`

- `@cliqzprefs:logger.hpn-lite.level: "debug"`


These settings indicate that debugging logs are actively being recorded, which is a 
common practice in development or testing environments. Public-facing apps should not 
typically enable such extensive logging in a production version due to privacy and 
performance concerns. The presence of debug-level logging suggests that the app may 
not have been officially released or has been altered to include these development 
features.


The install date of November 24, 2024 and migrationVersion: 4 suggest that the app is 
relatively recent, but it is important to note that the app has not been updated through the 
App Store since installation. Since the app has not received official updates, it may have 
been manually modified or is running an unauthorized version. The presence of 
timestamped configuration files (config_ts: "20241127"`) further suggests that the app 
may have been altered after installation, either through direct tampering or external 
manipulation.


The app's directory includes a `pmap` folder, which is not standard for most production 
apps. Inside this folder, the app contains subfolders such as `hpn-lite` and `human-web-
lite`, which are likely development or testing-related components. Additionally, the 
configuration data includes incomplete or unusual values, such as `config_location.city: 
"--"`. These anomalies suggest that the app is either in a beta or testing phase or has 
been modified in ways that are not consistent with its expected production state.


The session ID (e.g., `XX5PqVqmFX21KFZ5fF011391|20051|iOS-com.evidon.Ghostery`) 
and the field `@cliqzprefs:session` are indicative of user-specific session tracking, which is 
common in apps for personalization or performance monitoring. However, such session 
identifiers, when combined with developer-level flags and excessive telemetry, suggest 
that the app could be collecting more detailed user data than intended or necessary, 
which is a privacy concern if left unchecked.


56



Taken together, the presence of developer flags, debug-level logging, unusual folder 
structures, and unofficial session tracking strongly suggest that the Ghostery app has 
been altered or is running a beta version outside the official App Store distribution 
mechanism. The lack of official updates and the manual installation process further 
support the hypothesis that this app may have been tampered with after installation.


These findings align with the theory that malicious actors could be exploiting developer 
mode features to alter the app's behavior and possibly use it for unauthorized tracking, 
data collection, or other malicious purposes within the compromised environment. This 
supports the broader theory that apps may be deliberately modified without user consent, 
potentially for malicious surveillance or exploitation. The evidence indicates a significant 
breach of trust in the app's security and integrity.


Mozilla Privacy Browser: Potential Spying and Manipulation Log Reveal(appx.) 

Recent analysis of Mozilla’s privacy browser logs reveals concerning patterns that 
suggest the browser may be exploited for spying and system manipulation. Through 
repetitive function calls, suspicious kernel-level interactions, and unusual background 
processes, these logs point to potential malicious activity designed to give external actors 
unauthorized access to sensitive data, or even control over the device itself. Here's a 
breakdown of what the logs reveal:


The first red flag comes from repetitive function calls within core components like 
JavaScriptCore and WebCore. These logs show several instances of recursive function 
calls—where the browser repeatedly calls the same function, often without termination. 
For example, memory addresses like `??? (JavaScriptCore + 22995568) [0x1b51ce270]` 
and `??? (WebCore + 24456940) [0x1b145beec]` show up consistently. Such repeated 
calls may indicate a deeply nested infinite loop, potentially caused by malicious code 
execution. This could lead to a stack overflow or memory corruption, destabilizing the 
system.


The involvement of WebCore in these recursive calls raises further concerns. WebCore 
acts as the backbone of many web browser functions, and its manipulation could suggest 
code injection, where unauthorized code is injected into the browser’s core, allowing 
attackers to modify behavior or track user actions without detection.


The logs also highlight suspicious system-level manipulations that could point to malware 
activity. Calls reaching into libsystem_kernel.dylib, such as `??? (libsystem_kernel.dylib + 
339900) [0x19d414fbc]` and `??? (libsystem_kernel.dylib + 343488) [0x19d415dc0]`, 
suggest attempts at privilege escalation or even the installation of a rootkit. These types 
of kernel-level interactions are typically used to modify system behavior, often granting 
malware unauthorized control over the device. 


Further, thread manipulation is evident in calls to libsystem_pthread.dylib (e.g., 
`0x225920494`). Such activity is characteristic of spyware that seeks to control or monitor 
system threads, potentially running hidden background tasks without the user’s 
knowledge. The logs also show suspicious Thread QoS values that indicate processes 
may be running with elevated priorities, likely to ensure that these tasks go undetected.


57



Excessive resource consumption is another troubling sign. The logs show overlapping 
function calls in both JavaScriptCore and WebCore, suggesting that an infinite loop or 
malicious payload could be rapidly consuming system resources. Repeated calls to 
memory addresses like `??? (WebCore + 15357984) [0x1b0bae820]` may indicate a buffer 
overflow attack designed to exhaust system resources, potentially freezing or crashing 
the browser or device.


The logs also point to rootkit-like activity with calls to low-level system functions like IOKit 
and IOMobileFramebuffer (e.g., `0x1d41c3c04`). These are typically used to manipulate 
system input or display functions, possibly allowing attackers to alter system visuals or 
input mechanisms to hide the presence of malicious software. Such tactics are commonly 
used in system hijacking attacks, where malware tries to take full control over the device’s 
UI.


In addition to these system-level manipulations, we also see evidence of background 
activity that could be used to monitor user behavior. The backboardd process, 
responsible for managing the iOS UI framework, is found running high-priority tasks in the 
background even when apps are not in the foreground. This is typical of spyware that 
attempts to operate covertly, consuming power and processing resources while hiding its 
activity from the user.


Finally, the logs reveal suspicious network and web content behaviors. The appearance of 
a WebContentCaptivePortal process (`com.apple.WebKit.WebContent.CaptivePortal`) is 
highly unusual, especially when it appears without a legitimate captive portal context. 
Captive portals are typically used for public network authentication, but in this case, their 
presence could suggest network redirection or malicious content injection, potentially 
exposing users to phishing or man-in-the-middle attacks.


There are also signs that malware may be monitoring or reacting to user behavior through 
system calls to AttentionAwareness (e.g., `0x1cd7de52c`). These logs suggest that 
spyware may be using motion sensors or other tracking technologies to monitor user 
interactions, potentially for the purpose of data exfiltration.


Finally, the involvement of external libraries such as libdispatch.dylib and libxpc.dylib is 
concerning. These libraries are often used to maintain background operations or network 
communications, making them ideal for malicious code injection. Their interaction with 
core system components like QuartzCore and IOMobileFramebuffer suggests that 
attackers may be leveraging these libraries to hide their activities within legitimate 
processes.


The analysis of Mozilla browser logs paints a picture of a system under potential threat. 
Recursive calls, kernel-level manipulations, suspicious background activity, and abnormal 
web interactions all point to the possibility of malicious code, likely designed for spying or 
unauthorized control. The presence of these indicators suggests that the browser could 
be compromised, turning it into a tool for remote surveillance and data collection, often 
without the user’s knowledge or consent.


ARMv8.4-A Instruction Set (appx.)

The system report from Lirum Info lists the ARMv8.4-A instruction set. Based on my 
research, the A15 Bionic chip should typically report using ARMv8.6-A, a more advanced 
variant of the ARMv8-A architecture. The appearance of ARMv8.4-A is not documented in 
Apple's official specs for the iPhone 13, which makes it unusual.


58



Brand new MacBook (appx.) 
Yesterday, I purchased a new MacBook Pro 16-inch with the M4 Pro chip. It was delivered 
sealed, and as an added precaution, I unpacked it at a local official Apple Store. After 
unboxing, I immediately enabled Lockdown Mode and proceeded to update the device. 
However, I am already encountering the same issues I faced with my previous MacBook. 
This raises a disturbing possibility: even a sealed MacBook may not be immune to this 
sophisticated exploit.


I know, it sounds unbelievable and I was dumbfounded myself too. In theory, it is possible 
an unopened MacBook still has Bluetooth Low Energy (BLE) running. If a short-range 
exploit is targeting this active BLE service, it could compromise the device before it is 
even turned on for the first time. This presents a significant security concern, especially 
considering that BLE is always active in these devices, making them vulnerable to remote 
exploitation.


To investigate further, I double-checked the system’s certificates and kernel extensions 
(kexts). Kexts are low-level code modules that interact directly with macOS's kernel, and 
they can be used by attackers to gain deep access to the system. Certificates, on the 
other hand, verify the authenticity of software and ensure that it hasn't been tampered 
with. Unfortunately, the results were shocking: upon running terminal commands to verify 
system integrity, I found that the certificates were falsified and untrusted. Additionally, 
integrity checks for the kexts failed, indicating that they had been tampered with.


Also, the accessoryupdaterd process is continuously trying to access files like 
com.apple.mobileaccessoryupdater.plist further substantiates my suspicion that HomeKit 
or Bluetooth could be manipulating nearby devices, even though I'm not using any 
accessories. The localspeechrecognition process interacting with speech services despite 
being disabled suggests that Siri is being abused for unauthorized system interaction, 
possibly even memory manipulation. The repeated NO_ACCESS errors with mach-lookup 
point to attempts to bypass security restrictions, which raises concerns about deeper 
system compromise. The sandbox violations from accessoryupdaterd suggest it's trying 
to access resources outside its intended scope. These unusual behaviors collectively 
indicate possible manipulation and a serious breach of my system’s security.


The recent logs provide compelling evidence of SEP tampering, supporting the thesis of 
device compromise:

1. Disabling of SEP Endpoints: Multiple SEP endpoints (EP 8, 10, 18, 21, 23) were 

disabled at various times, indicating intentional interference with SEP operations. 
This behavior is abnormal and suggests a security breach.


2. AppleSEPKeyStore Errors: Numerous failed operations with error codes like 
e00002f0 and e00002c2 point to issues with secure key storage, implying 
tampering or corruption of SEP functions essential for cryptographic security.


3. AppleCredentialManager Logs: Power-off actions report SEP endpoints being 
disabled, raising concerns about the integrity of credential management and 
potential bypass of security measures.


These anomalies are signs of SEP manipulation, creating significant security risks and 
suggesting the device may have been compromised at a fundamental level. The logs 
show an abundant and continuous pattern of SEP endpoint disabling and 
AppleSEPKeyStore errors, reinforcing the likelihood of ongoing tampering with the Secure 
Enclave.


59



I’ve also been seeing a massive flood of log entries from runningboardd with memory limit 
errors like MEMORYSTATUS_CMD_CONVERT_MEMLIMIT_MB(-1) and 
MEMORYSTATUS_CMD_CONVERT_MEMLIMIT_MB(0), all returning an "Invalid 
argument" error. These entries appear thousands of times in quick succession, which is 
highly unusual and could indicate something malicious at work. This behavior suggests 
an attempt to tamper with system memory management, either through a misconfigured 
process or a deliberate attack trying to corrupt memory limits or cause instability. The 
rapid, repetitive errors look like an attempt to overwhelm the system’s memory control 
functions, which is a common tactic in buffer overflow exploits or denial-of-service (DoS) 
attacks. If this is tied to a rootkit or other malware, it’s likely trying to evade detection or 
disrupt important system functions.


Additionally, recent kernel logs reveal troubling patterns that further corroborate the 
possibility of systemic compromise. For example, the entry from AppleMobileFileIntegrity 
contains the message AMFI: ‘developer mode is force enabled on this platform’. The 
activation of developer mode without user consent or known cause strongly suggests 
tampering at the kernel level.


In conclusion, this potential exploit chain appears to be capable of bypassing even the 
latest MacBooks and Apple’s supposedly robust security measures. The fact that the 
device might be compromised before it is even powered on suggests an unbelievably 
serious vulnerability that needs urgent attention.


Echoes of a Broader Exploit 

While this paper focuses solely on Apple’s vulnerabilities, I have additional findings that 
strongly suggest this exploit is not limited to Apple devices. It appears to be a cross-
platform attack that also targets Windows and Android, exploiting similar weaknesses in 
Bluetooth, device pairing, and remote management. 


In an effort to secure a device that would not be subject to the same tampering as my 
Apple devices, I purchased an Android device with the hope of maintaining a more secure 
environment. However, within a few days of use, the device was unexpectedly placed in 
developer mode without my consent, similar to what I had experienced on my Apple 
devices. This suggested that unauthorized access or control over the device was 
continuing, despite switching platforms.


Furthermore, I observed significant system file alterations: critical Android system files 
were replaced with versions from 2018, a highly unusual occurrence that strongly 
suggested intentional tampering with the operating system. Additionally, the Bluetooth 
firmware was overwritten, with the date set to January 1, 1970, an anomaly that could be 
indicative of an attempt to obscure the tampering. The date aligns with the Unix epoch, a 
standard starting point for time in Unix-based systems. Using this epoch time as a 
placeholder may have been a deliberate attempt to hide altered files by ensuring they 
appear as if they were created or modified at a far earlier time, making it more difficult for 
security systems or forensic analysts to detect anomalies.


A particularly troubling finding was the tampering with system-level processes, 
specifically the ANT+ radio service, which is typically used for wireless communication 
with fitness trackers and other peripherals. 


60



This service was found to be overwritten by two apps from the Google Play Store—likely 
malicious apps that were either downloaded unknowingly or disguised as legitimate 
software. Since ANT+ is a system-level process, it is not typical for Android apps to have 
access to modify or overwrite such a critical service. The unauthorized alteration of this 
service could potentially enable attackers to exploit ANT+ to send malicious code to 
nearby devices. This could allow attackers to compromise sensitive personal data or use 
these devices for further exploitation.


While ANT+ is not natively supported on Apple's platform and provides hardware 
limitations, the sophistication of the attack across multiple devices and platforms points 
to a broader and more complex strategy. Given that the attackers have demonstrated the 
ability to rewrite firmware on Android, Apple and even Playstation devices, there is a 
possibility that they could be adapting their techniques to affect other platforms in ways 
that were previously thought to be impossible. 


The terrifying reality is that these vulnerabilities could allow malicious actors to 
compromise not just Apple devices, but any device in the vicinity. This isn't just a flaw in 
Apple's security—it's a dangerous, evolving exploit that could be affecting all your 
devices without you even knowing. The implications are staggering, and the threat is far 
more widespread than most realize.


10. Exploit Chain: My Hypothesis 
After carefully analyzing the data and my personal observations, I have come to a chilling 
conclusion: compromised devices in my home seem to actively seek out and attack any 
new device that enters the vicinity. The moment a new device is detected or begins its 
setup process, it is immediately attacked by nearby compromised devices. This isn’t just 
an isolated occurrence—it’s a deliberate action. Using Bluetooth-based exploits within 
iBeacon, HomeKit, and other nearby sources, these compromised devices attempt to 
infiltrate the new device, leveraging these vulnerabilities to gain unauthorized access.


If they fail to gain entry directly, these devices don’t stop. Instead, they extract the unique 
ID of the new device and send it out, likely for tracking or further exploitation. Their 
fallback plan? An iMessage, a communication method many assume is safe. However, as 
shown in my research, iMessage and FaceTime are far from secure. Through apparent 
vulnerabilities in the BlastdoorService, these malicious actors are able to force the 
installation of an unauthorized Mobile Device Management profile onto the new device. 
Once this profile is installed, the device is essentially compromised.


The attackers’ capabilities don’t stop at MDM exploitation. On my new MacBook Pro, 
even after activating Lockdown Mode and ensuring updates were applied, I discovered 
falsified certificates and tampered kernel extensions (kexts), highlighting the exploit’s 
ability to manipulate core system integrity. Attackers could leverage Siri and automation 
frameworks, such as BackgroundShortcutRunner, to execute unauthorized scripts or 
download harmful payloads. These tools, intended to enhance user functionality, are 
being repurposed to bypass security measures and establish persistent control over 
devices.


61



Apple’s legacy infrastructure, such as me.com and outdated synchronization protocols, 
inadvertently facilitates this exploit chain. Weaknesses in services like iCloud and 
Continuity allow attackers to replicate devices and harvest sensitive data, enabling full 
system cloning. This process captures everything—from personal data to system 
configurations—with attackers maintaining access through persistence mechanisms like 
Developer Mode. Once in Developer Mode, they can alter settings, install unauthorized 
apps, and exert remote control over the device.


This isn’t just conjecture; it’s a pattern I’ve observed repeatedly, supported by mounting 
evidence from both logs and direct device behaviors. The coordination and precision of 
these attacks underscore their advanced nature, posing a significant risk to privacy and 
security. Every piece of evidence points to a deliberate, systemic vulnerability that 
attackers are exploiting to compromise even the most recent up-to-date devices.


Significance of This Research 

What makes this research so critical is the disturbing reality it unveils: Apple devices—
widely considered some of the most secure on the market—might be relentlessly 
exploited in ways most people don’t even realize. The truth is, Apple devices are not 
impervious to sophisticated attacks. This research pulls back the curtain on how easily 
nearby compromised devices can target and take control of a brand-new device, often 
within mere minutes. This is not some abstract vulnerability—it seems to be happening 
right now, and most users have no idea.


The assumption that Apple’s ecosystem is invulnerable is dangerously false. Attackers 
can remotely infiltrate devices, manipulate them, and gain persistent access without users 
ever realizing. With connected devices becoming more and more ubiquitous, the risk of 
widespread exploitation is enormous. This research calls for a serious reassessment of 
what we consider secure and should serve as a wake-up call for everyone who thinks 
their Apple device is safe from attack. The implications are far-reaching, and the need for 
better protection has never been more urgent.


Conclusion 
The implications uncovered in this investigation raise serious concerns about both 
personal privacy and the broader security of Apple devices. The discovery that an 
unknown source may have full access to sensitive data—such as photos, passwords, and 
financial information—underscores the gravity of the situation. This access, if unchecked, 
can lead to significant privacy violations and manipulation of personal information, which 
is particularly alarming given the absence of proper support from both Apple and external 
entities.


The persistence and sophistication of this exploit chain, combined with the ability to 
infect nearby devices, indicates a deliberate and complex operation, which may be far 
more widespread than initially anticipated. This raises important questions about how 
vulnerabilities in widely-used devices, which are typically seen as secure, can be 
exploited without detection. 


The lack of action or meaningful intervention from official support channels further 
highlights a potentially dangerous gap in the cybersecurity landscape, one that could 
have far-reaching consequences for the broader user base. 


62



While I acknowledge that my findings could be wrong, the evidence I have gathered, 
along with my personal experiences, makes it impossible to dismiss the possibility that a 
significant breach of security is taking place. Applying Occam’s Razor—while keeping an 
open mind—has not yet led to a simpler explanation for the anomalies observed, which 
reinforces my conviction in the validity of the findings. 


Ultimately, the persistence and thoroughness required to uncover such an exploit is both 
a testament to the seriousness of the attack and a clear indication of how sophisticated 
and persistent modern cyber threats have become. It is my hope that my research will 
serve as an incentive for industry experts to conduct further investigations in either 
confirming or rejecting my drawn conclusions, while also recognizing the need for more 
robust support systems both from tech companies as from government institutions. The 
broader implication of this research is a call for vigilance, transparency, and stronger 
safeguards in the face of emerging, increasingly complex cyber threats.


Final Thoughts 

I am bringing forward this information out of pure necessity. If my research is indeed 
correct, I can’t seem to bring any device into my home without it becoming infected 
almost immediately. The privacy implications are significant: an unknown source may 
have access to all of my personal data, including photos, passwords, and financial 
information. The thought of this is chilling, and the daily impact it has on my life is 
profound, as I am constantly unsure whether my private information is being accessed or 
manipulated. It is frustrating not to be able to receive proper support, and the lack of 
assistance from Apple, online communities, and government agencies—whom I reached 
out to but who either didn’t respond or didn’t take my concerns seriously—only deepens 
my sense of helplessness.


While I am frustrated by the lack of support, my hope in sharing this research is to help 
others who may be facing similar issues. I want to encourage people to do their own 
research, as long as they remain open-minded and cautious, avoiding hasty conclusions. 
I have done my best to keep my interpretations grounded. That said, I cannot rule out the 
possibility that I am wrong; this still feels unreal, yet my experiences, observations and 
findings compel me to respect the evidence that I have gathered. Ultimately, I must trust 
both my observations, gathered evidence and my instinct in understanding what has 
been happening to my devices.


In the end, this situation presents a win-win scenario for me. If I am proven wrong, I will 
finally feel at ease, knowing that my devices are secure and that my concerns were just a 
product of overthinking. However, if I am right, I’ll have uncovered one of the most 
elaborate and persistent exploits in recent history, all with limited resources and without 
professional help. That would be a significant accomplishment, and I’d be proud of my 
determination to unravel something so complex, driven solely by my traits; persistence, 
stubbornness, insatiable curiosity, and and unwavering commitment in defending my 
rights as an individual.


63



Apple, I shared my findings through your bug bounty program, hoping for constructive 
engagement, yet I was met with silence—no response, no willingness to engage in a meaningful 
dialogue. If my findings are validated, it means that not only have I been denied a substantial 
bounty reward, but more significantly, a deeper trust has been violated. The very promise you have 
made—of protecting user privacy—appears to be nothing more than a hollow marketing slogan, a 
sales pitch designed to ease fears rather than address them. 

I’ve been a loyal customer for half my life. I’ve trusted you with my personal data, with the intimate 
details of my existence. Half of my life’s data might be out there—somewhere, floating in the ether, 
exposed to anyone with the means and motive to exploit it. Will it one day be used against me? 
With every advancement in technology, every expansion of surveillance capabilities, I can’t help 
but feel more vulnerable, more exposed. The possibility that my microphone or camera could be 
accessed without my knowledge, that my every move could be watched or tracked, is a haunting 
thought. 

What is the true cost of this loss? Can we ever truly measure the price of our identity being 
fractured, of knowing that we are always under observation, always being watched? How do we 
quantify the damage done when the boundaries between our private selves and the public eye 
blur, when we are no longer in control of our own stories? Is there any way to compensate for the 
psychological toll this takes—the anxiety that becomes part of our daily existence, the quiet fear 
that lingers in every action, every interaction? 

It is said that privacy is a fundamental human right, yet in a world increasingly driven by data, we 
must ask: what happens when that right is stripped away? When the very institutions we trust to 
protect us instead turn our lives into mere commodities? What price do we pay when our personal 
information is treated as just another data point to be exploited for profit, when our very existence 
is reduced to a marketable asset? 

I’ve tried to help, to alert you to the risks, to bring attention to the flaws in your systems, yet my 
efforts have been dismissed. The lack of response—no acknowledgment, no real attempt to 
address the issue—speaks volumes. It feels as though the only price being considered is the one 
that affects your stock price, your bottom line. In that sense, at least, you are doing well. 

But what about the rest of us? What are we worth in this new world, where our personal lives are 
no longer sacred, but just another commodity? How much of ourselves are we willing to lose in 
exchange for convenience, for technology, for the illusion of security? Privacy should not have a 
price tag—it is the very foundation of our freedom. And yet, as technology evolves, we are left to 
wonder: what is the true cost of this loss? And is it one we can ever truly afford? 

Sincerely, 

C.N.

"The Party told you to reject the evidence of your eyes and ears. It 
was their final, most essential command."
— George Orwell, 1984 

64


	Introduction
	1. Discovery and Disbelief: Apple’s Inaction in the Face of an Exploit
	2. The Price of Discovery: My Journey
	3. The iOS Breach: First Signs of Trouble
	4. New Phone, New Strategy
	5. Silent Signals: Scrutinizing iOS Logs
	6. Hidden Menace: Uncovering the Scope
	7. iOS Exposed: The Silent Takeover
	8. Connected Threats: Siri, Proxies, and Device Cloning
	9. Supplementary Findings
	10. Exploit Chain: My Hypothesis
	Conclusion

